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Abstract. This paper describes a novel approach in formation control
for mobile robots. A Nonlinear Model Predictive Controller (NMPC) is
used to control the formation of a heterogeneous mobile robots group.
The desired formation is formed by an holonomic robot and a nonholo-
nomic robot. The same nonlinear controller is used in both robots with
the same cost function. The details of the controller structure are pre-
sented in order to track a fixed target departing from different positions
in the field avoiding collisions with each other. A soccer robot competi-
tion field is used to present the simulations to evaluate the performance
of the controller.

Keywords: Formation Control, Nonlinear Model Predictive Controller,
Mobile Robots

1 Introduction

An adaptive framework based in predictive control for creation and maintaining
of a mobile robot team formation was conceived as main objective of this work.
A formation is usually defined as the special arrangement of a set of agents of
the same type, where the relative positions of its elements are steady even if the
formation is moving. The used formation differs from the usual rigid formations
where the relative position of a team element must be precisely maintained.
Here, the ideal formations are the ones that maximize the team perception of
the environment or of an element that can be a leader robot or of a moving
target.
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dinated Multi-Robot Motion Control”.
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The three major approaches used in multi-robot formation are: Virtual Struc-
ture, Behavior-Based and Leader-Following. This last one being one of the most
studied in multi-robot formation [3], [7] and [4]. Nevertheless, it’s important
to mention that different techniques forming the Decentralized approach have
always been sustained using artificial potential fields [1], constrained force [14]
or path planner strategies [9]. Nevertheless, a good review of the three major
approaches in formation control can be seen in [2]. In this paper, the leader-
following approach will be used. The leader here will be the target (in this case
the ball). Nevertheless, here the target is fixed as the objective is the convergence
of the formation.

One of the most used controllers in the leader-follower approach is the Model
Predictive Controller. It has been the target of study in multi-robot motion
control in almost a decade [5]. In 2008, the first use of a MPC applied in the
leader-following approach using holonomic robots was done by [8]. In these ap-
proaches only the formation maintenance is discussed. In these works the circle
trajectory and the eight trajectory were used. The robots should follow the paths
in a pre-set time while changing their formation (column or triangle). It’s known
that in a highly dynamic environment, if the trajectory is pre-defined, the lin-
ear MPC, even though applied to a non-linear system, can control the system
maintaining the set-point. This was the exact result given by the authors.

In the following year, [6] applied a Linear Model Predictive Controller in
the leader-following approach. They applied it in nonholonomic robots using
the separation principle to make a NMPC control the trajectory while a MPC
would be used to formation control. Both works only had simulation results and
no obstacles were considered.

Finally, departing from the idea of using the separation principle done by [6],
this paper presents a generic Nonlinear Model Predictive Controller (NMPC)
framework to converge the formation using a holonomic and a nonholonomic
robot around a tracking target.

2 FORMATION CONTROL

The controller used in this work to formation control was a Non-linear Model
Predictive Controller (NMPC). The general structure of this controller can be
classified in three types: distributed, centralized, or hybrid. These categories are
based on the way the control signals of each robot are calculated.

Here, the distributed architecture was chosen as can be seen in Fig. 1. In
this case, each one of the robots calculates the total control inputs Un solving
its own optimization problem. This takes away the dependency from a central
processing unit, guaranteeing the functioning of the formation even in cases of
communication failure. Therefore, each robot must have information about the
state Xn (position and speed) of each mate of its team. Also, in case of the com-
munication failure or supervisor failure, the robot uses its predicted open-loop
strategy to determine these informations, having, therefore, a tolerance degree to
failure. Nevertheless, it has the disadvantage of putting a cost in computing the
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Fig. 1: Distributed Architecture of NMPC Controller

simulation of the entire formation progression, which is done by each one of the
robots. However, this was not a problem, for the robots only calculate their own
control inputs. As each robot solves its optimization problem in a decentralized
architecture, the formation becomes difficult to stabilize.

In this multi-robot formation control case of study, a simulation software
called SimTwo was used to simulate the formation [10]. In this simulation, the
SimTwo has the job of another software called HAL (Hardware Abstraction
Layer), which is an application that receives the sensor signals and communicates
with the actuators, and then with the mDec (software of control of the real
robots) by UDP protocol. In the real robots, the HAL sends to the robot’s mDec
the state of the other robots and the state of the ball. Then, each mDec sends to
the SimTwo the control references of its robot. Each mDec also communicates
with another central computer (the supervisor) that contains the Coach software,
sending its own state and the state of the ball while observing it. Finally, the
Coach sends to each mDec individually the state of the other robots in formation,
in a way that each robot has the information of position and velocity of its
mates. It can be noticed that this arrangement is similar the one used in real
experiments, where the only difference is the replacement of the SimTwo for the
HAL in each robot.

The capacity of the NMPC controller to create and maintain a formation
comes from the fact that cost functions used by the controllers of each robot
in the team formation are coupled. This coupling is done while the information
about the position and speed of the other robots are used in the cost function of
each robot to penalize the geometry or desired objective deviation. This turns
the entire group formation stable where the actions of each robot affect the other
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Fig. 2: Structure of the Formation Controller Projected

mates. Fig. 2 exposes the structure of the used controller. This controller can be
divided in three parts:

– State of the Formation - The controller contains structures to keep the
formations state (position and speed of each other robot in the formation or
of any target that should be followed), updating them in each control loop.
These informations can be received by a supervisor or by other robots from
the team, or even by the robot itself using its own resources;

– Optimizer - This part uses a numeric minimization method to optimize
the cost function and obtain the signals of optimal control. Here it is used
a method called Resilient Propagation (RPROP), which guaranties quick
convergence;

– Simulator - This part does the simulation not only of the robot state evo-
lution but also the state evolution of the other elements in the formation
(other robots or targets). This element uses a dynamic simplified model to
emulate the robot evolution. The speeds of the other robots or targets are
assumed during the entire horizon of prediction as being constant and equals
to the actual speed.

The Resilient Propagation algorithm (RPROP) appeared in the learning al-
gorithms category used in neural networks [11], being adapted to this applica-
tion. This is an adaptive method where the step value is not proportional to the
gradient function value to be minimized in a desired point (as it happens in the
Steepest Descent algorithm), but it keeps adapting with the function behavior.
Therefore, it becomes immune to the uncertainties of the derivative function
value, depending only on the temporal behavior of its signal. This algorithm
was tested initially with the values suggested by [11] and it revels to be capable
to converge where the Steepest Descent failed.



A Generic Framework for Multi-Robot Formation Control 221

Fig. 3: The used holonomic robot (left) and nonholonomic robot (right).

3 PROBLEM FORMULATION

The developed framework was applied to a formation with one holonomic mobile
robot from the FEUP’s 5DPO team and one nonholonomic mobile robot also
from FEUP (Fig. 3). These robots can fulfill one main objective: the optimization
of the target relative state perception (ball relative state perception) using the
nonholonomic robot as observer while the holonomic robot places itself in an
ideal position to receive the ball (receiver). The robots should converge to this
formation departing from different positions and avoiding the collisions between
themselves or with the target.

The mathematical definition of the system can be understood as having two
robots and a ball (target). One of the robots is an omnidirectional robot com-
posed by three holonomic wheels and the second robot is a differential robot
with two normal wheels aligned in the center of the robot. Taking as base for
this formation definition the elements presented in Fig. 4. The ball position and
speed vectors in global coordinates are respectively:

Xball(k) =
[
xball(k) yball(k)

]T
, (1)

vball(k) =
[
vxball(k) vyball(k)

]T
. (2)

It is considered also that the unit vector of the ball’s velocity

v̂ball(k) = [v̂xball(k), v̂yball(k)]T . (3)

is such that:

v̂ball(k) =
vball(k)√

vx2ball(k) + vy2ball(k)
. (4)

For each robot n, its state is represented by:

Xn(k) =
[
xn(k) yn(k) θn(k)

]T
, (5)
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Fig. 4: The desired formation.

Vn(k) =
[
vxn(k) vyn(k) wn(k)

]T
. (6)

Note that for the nonholonomic robot, vyn(k) = 0. The position of the ball
with respect to robot n is given by PRn−B(k)=[xRn−B(k), yRn−B(k)], where:

PRn−B(k) =
[

(xball(k)− xn(k)) (yball(k)− yn(k))
]
. (7)

Then, it shall be defined the unit vector P̂Rn−B(k)=[x̂Rn−B(k), ŷRn−B(k)],
which indicates the direction of the ball with respect to the robot, and its angle
θRb−B :

P̂Rn−B(k) =
PRn−B(k)√

x2Rn−B(k) + y2Rn−B(k)
, (8)

θRb−B(k) = atan2(yRn−B(k), xRn−B(k)). (9)

Finally, there is also the definition of the positions of each robot n with
respect to its mates y, given by PRn−Ry(k)=[xRn−Ry(k), yRn−Ry(k)], where:

PRn−Ry(k) =
[

(xn(k)− xy(k)) (yn(k)− yy(k))
]
. (10)

3.1 The Observer Robot

The estimation of the quality of the ball state is a function of its moving direction
with respect to the robot and the distance in between. This estimation is done
by using an omnidirectional vision system. Therefore, it’s clear that in this case,
the robot’s direction is irrelevant. If the ball is in movement, the robot should
be as indicated in Fig. 4. As in this case the ball is not moving, the robot’s
orientation becomes also irrelevant.

Nevertheless, big distances between the robot and the ball results in failure
of the ball’s detection. Consequently, this leads to the failure to estimate its
velocity. When the distance is too small, it can occur that the robot cannot see
the entire ball and, therefore, become incapable to detect correctly its position
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increasing the risk of undesired collisions. Take as an example the case in which
the distance between the ball and the robot decreases with time in a straight
line. In this case the robot only sees the ball increasing in size, making it difficult
to estimate its velocity. In the ideal case the ball should move perpendicular to
its position with respect to the robot. Therefore, the desired formation for the
observer robots to be around the ball in a way to better estimate the ball velocity
possesses the following characteristics:

– The observer robot puts itself by the side of the ball, maintaining a parallel
velocity with respect to the ball, vball, with the same modulus. In this case, as
the velocity of the target is zero, the position around the target is irrelevant;

– The robot position vector with respect to the ball, PRxB
, must be perpen-

dicular to the ball’s velocity vector, vball. Again, in this case this product is
null for the target is fixed;

– The robot must maintain a distance |PRxB
| from the ball;

– The robot must not collide between them or with the target.

Therefore, taking into account all the elements previously described, the
weights given to each one of them, and a penalization term to the variation
of control effort, the cost function that represents all this, embedded in the
observer robot is as follows:

J(N1, N2, Nc) =

N2∑
i=N1

λ1(dsetpoint − |PRn−B(i)|)2+

N2∑
i=N1

λ2(P̂Rn−B(i) · v̂ball(i))2+

N2∑
i=N1

λ3((
1

−dmin + |PRn−Rm1
(i)|

)2+

(
1

−dmin + |PRn−Rm2
(i)|

)2)+

Nc∑
i=1

λ4(∆U(i))2,

(11)

WhereN1,N2 is the prediction horizon limits, in discrete time, so thatN1 > 0
e N2 ≤ Np, where Np is the desired prediction horizon. Also, Nc is the control
horizon, λ1, λ2, λ3, λ4 are weights for each component of the cost function and
∆U(k) = [vr(k)− vr(k− 1)] + [vnr(k)− vnr(k− 1)] + [wr(k)−wr(k− 1)] is the
variation of the control signals, with U(i) being the reference velocities vector
with respect of the center of mass of the robot.

3.2 The Receiver Robot

The ideal position of the receiver robot with respect to the ball to have a good
reception of it corresponds to the one in which the robot velocity vector is
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collinear with the ball velocity vector, with the same modulus. Also, the robot
orientation should be such that the front of the robot is turn towards the ball.
Therefore, the robot can then slowly decelerated and the distance between it
and the ball can be decreased in a way to receive the ball in ideal conditions.

Summarizing it, the formation here should possess the following characteris-
tics:

– The robot’s velocity has to be equal in modulus and direction to the ball’s
velocity vball;

– The robot’s position vector with respect to the ball, PRn−B , must be collinear
to the ball’s velocity vector, vball;

– The robot’s orientation θn must be at all times equal to the vector PRn−B ’s
angle, defined by θRn−B , in a way that the kicker of the robot is always turn
towards the ball;

– The robot must be at a distance |PR−B | from the ball.

Finally, joining all the elements previously described, the weights given to
each one of them, and a penalization term to the variation of control effort,
the cost function that represents all this, embedded in the receiver robot is as
follows:

J(N1, N2, Nc) =

N2∑
i=N1

λ1(dsetpoint − |PRn−B(i)|)2+

N2∑
i=N1

λ2(−1)2+

N2∑
i=N1

λ3((
1

−dmin + |PRn−Rm1
(i)|

)2+

(
1

−dmin + |PRn−Rm2
(i)|

)2)+

N2∑
i=N1

λ4(diffAngle(θn, θRn−B))2+

Nc∑
i=1

λ5(∆U(i))2,

(12)

WhereN1,N2 is the prediction horizon limits, in discreet time, so thatN1 > 0
e N2 ≤ Np, where Np is the desired prediction horizon. Also, Nc is the control
horizon, λ1, λ2, λ3, λ4, λ5 are weights for each component of the cost function
and ∆U(k) = [vr(k) − vr(k − 1)] + [vnr(k) − vnr(k − 1)] + [wr(k) − wr(k − 1)]
is the variation of the control signals, with U(i) being the reference velocities
vector with respect of the center of mass of the robot.
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4 RESULTS

Once the formation algorithm was implemented, some simulations were made
to validate the proposed controller and to test its performance under different
conditions.

There are many variables that influences the quality of the result. Among
them are the weights (the λi) of each cost function and the optimizer parameters.
The cost function values for both observer and receiver robots can be seen in table
1. In the minimization of the cost function values, only the relationship between
the weights given to each element that meters to the final result. Therefore, the
final values were a result of an iterative process where the weights are slightly
different from one robot to another due to the existing physical differences. This
process did not need to be very precise, due to the fact that there were a very
large range of weights that could give similar results. Nevertheless, the NMPC
controller parameters were Np = 10, Nc = 2 and the used reference trajectory
to find them was an gate signal extracted in a previous work done by [12].

Table 1: Weights for the Observers and Receiver.
Weight Observer Value Receiver Value

λ1 30 5

λ2 10 10

λ3 100 100

λ4 10 5

λ5 - 10

The initial parameters used on the RPROP optimization algorithm were the
ones suggested by [11] (η+ = 1.5, η− = 0.5, ∆0 = 0.1) where the algorithm
description can also be found. The fist tests resulted in a very satisfactory per-
formance by the controller. After 20 interactions, some changes made on these
values were tested (η+ = 1.2, η− = 0.8, ∆0 = 0.05) and produced visible im-
provements.

Therefore, the following simulation results made with the formation con-
trol framework evaluate the proposed controller. The simulations for formation
convergence are shown to evaluate the formation controller in the following sub-
section.

4.1 Formation Convergence Results

The following results show the trajectories followed for each one of the robots
when, starting from different positions, converge to a preset formation. The
target in these cases is stationary during the simulation making the internal
product of any vector with the ball velocity vector equals to zero. It is important
to notice that the robot number 2 is the observer robot (the nonholonomic AGV)
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which means that it can be placed in any position exactly 2m far from the ball,
while the robot number 1 is the receiver robot (the holonomic 5DPO) which
means that it must be placed in front of th ball. The desired distance between
both robot to the ball was defined to be 2 m.

Simulation 1 In this simulation the robots start at positions perfectly opposites
and far from the ball (Robot 1 in position (-7,0) and Robot 2 in position (7,0)).
For having less risk of collision or probability of the robots to interfere with each
other, this became the simplest case. The results can be seen in Fig. 5. From
this simulation on it can be noticed some interaction between the robots. The
robot 1 goes to the front of the ball while the robot 2 places itself anywhere
at the desired distance. As the robot 2 arrives first and places itself in front of
the target, the robot 1 stops near the robot 2 avoiding the collision and placing
itself as close as possible to the desired position (front of the ball) at the desired
distance. The convergence is made in 15 seconds due to the attempt of robot
number 1 to position itself in front of the target.
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Fig. 5: Convergence into formation, simulation 1.

Simulation 2 Here all robots start from the same side of the ball (Robot 1 in
position (-7,4) and Robot 2 in position (-7,-4)), thought separated by a distance
of 8 m. The results can be seen in Fig. 6. The robots converge perfectly to their
positions in formation, making simple trajectories towards the target. As can
be seen in the plot of the distance with respect to the time, it can be estimate
that the robots have converged to the desired formation in approximately ten
seconds.

Simulation 3 The third simulation shows a more complex situation, where
the robots start from the same alignment with respect to the ball (Robot 1
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Fig. 6: Convergence into formation, simulation 2.

in position (-7,0) and Robot 2 in position (-5,0)). The results can be seen in
Fig. 7. It is important to notice that the robots cross it other paths but do not
collide, for the instant of time is different when passing though that specific
position. The robot 2, even being closest to the ball, had to do much more turns
to position itself in the desired position and orientation due to its nonholonomic
constrains. While the robot number 1 goes smoothly to its position. This process
takes about 22 seconds.
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Fig. 7: Convergence into formation, simulation 3.

5 Conclusions

In this paper a novel approach of a Non-linear Model Predictive Controller
was presented used for multi-robot formation control. The developed framework
showed to be very flexible and easily adaptable being used in holonomic and
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nonholonomic robots. The projected controller is capable of making a team of
different robots to converge to a desired position around the target, even if the
robots are very far apart. This framework could be also applied for both types
of robots due to the fact that the effort of control does not take into account the
tensions on the motors or the actuator input signals, but the velocities of center
of mass. The results showed that the robots converged to the desired distance
from the target (in this case 2m).
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