
Multi-Robot Cooperative Object Localization

Decentralized Bayesian Approach

João Carlos da Silva Santos

Dissertação para obtenção do Grau de Mestre em

Engenharia Electrot écnica e de Computadores

Júri
Presidente: Carlos J. Silvestre
Orientador: Pedro U. Lima
Vogais: Alexandre M. Bernardino

Dezembro de 2008

Acknowledgments

Aqui, agradeço a todos aqueles que pelos mais variados motivos considero que tiveram uma

enorme influência no meu trabalho, na minha formação e no fundo contribuı́ram para quem eu

sou hoje...

À minha famı́lia, por um apoio sem igual, pela dedicação, esforço e pela força de acreditar.

Obrigada Mãe, obrigado Pai...

A todos os meus amigos... Isto teria sido bem mais complicado e muito menos divertido sem

vós!

Obrigado a todos aqueles que comigo fizeram parte da SCDEEC, foi um prazer fazer parte

desta equipa.

Obrigado a todos os BESTies, foi uma aventura inesquecı́vel e um lema que ficará para sem-

pre: ”work hard, party harder”!.

Obrigado também a todos aqueles que contribuı́ram para o projecto ISocRob, por aquilo que

me possibilitaram aprender convosco, por todas as experiências e pela vivência dos torneios.

Vou sentir falta desta adrenalina... e vou ter saudades do omni5!

À ENTeam: Estilita, Marco e Nelson, isto tem sido uma viagem.... Obrigado por tudo aquilo

que passámos juntos... E agora que venham mais sucessos ;)

Ao Prof. Pedro Lima, obrigado, não ao orientador (apesar das dores de cabeça que lhe

causei), não ao professor (apesar dos bons ensinamentos), mas obrigado essencialmente ao

apaixonado pela robótica que acolheu no ISR, da melhor maneira possı́vel, 4 caloiros com muita

vontade de brincar aos robôs... Obrigado por tudo aquilo que me proporcionou, e por ter marcado

os anos que passei no Técnico da melhor forma.

Por muito mais do que aquilo que eu te posso algum dia agradecer, obrigado pela paciência,

pelo apoio e pela inspiração.... Obrigado Sofia.

Abstract

When operating in a complex unstructured environment, a team of cooperative robots be-

comes a team of sensors, each making observations to build a perception of reality that can be

improved by others. A sensor model describes the uncertainty associated with each observation

allowing to extract relevant information, rather than simple raw data from a physical device.

The sensor models are often nonlinear resulting in non-Gaussian posterior distributions. How-

ever, a parametric (e.g. Gaussian) approximation of sensors information is usually a better choice

given the low computational power and low communications bandwidth it requires when sharing

information. This is achieved at the cost of a limited representation of the sensors belief. Non

parametric discrete approximations, such as Particle Filters, are able to capture arbitrarily com-

plex uncertainty, but are intractable when it comes to communicating the state distribution due to

the necessity of transmitting a large sample-based representation.

We aim at developing a cooperative sensor fusion model for mobile robots acting in dynamic

environments. Our case study is the RoboCup MSL, where we implemented a shape-based 3D

tracker for the target at hand: the ball. Furthermore, we aim at conceiving a more accurate

probabilistic representation of the information shared between sensors, that copes with nonlinear

sensor models. We took particle filters, Gaussian Mixture Model and a decentralized Bayesian

approach to propose a cooperative sensor model that improves ball tracking and self-localization.

Keywords

Decentralized Sensor Fusion, Distributed Particle Filter, Gaussian Mixture Models, 3D Track-

ing, RoboCup

iii

Resumo

Em ambientes pouco estruturados, uma equipa de robôs torna-se numa equipa de sensores,

cada qual fazendo observacões para construir uma percepção da realidade que pode ser mel-

horada por outros. Um modelo do sensor descreve a incerteza associada a essas observações,

permitindo recolher informações mais relevantes do que leituras de dados de um dispositivo.

Os modelos de sensores tipicamente são não lineares, originando distribuições não Gaus-

sianas sobre a certeza das observações efectuadas. Aproximar a informação do sensor a uma

Gaussiana é normalmente uma boa opção devido à sua parametrização simples, que não leva

a uma estrutura de dados complexa que ocupe muita largura de banda quando se partilha

informação. No entanto, quando se incorre em tal aproximação a representação da crença de

um sensor é limitada. Outros tipos de aproximações não lineares, como Filtros de Partı́culas, são

capazes de captar melhor a incerteza de um sensor, mas não é suportável do ponto de vista da

comunicação transmitir todas as partı́culas que aproximam essa incerteza.

Foi desenvolvido um modelo de percepção cooperativa para robôs móveis que operam em

ambientes dinâmicos. O modelo foi aplicado a robôs futebolistas, onde primeiro implement/’amos

um seguidor 3D capaz de seguir uma bola pela sua forma. Iremos ainda conceber um método de

representação probabilı́stica para a informação partilhada entre sensores, que lida com modelos

não lineares. Apresentamos no fim a nossa abordagem descentralizada, com base em filtros de

partı́culas, modelos de misturas Gaussianas e no filtro de Bayes, para implementar um modelo

de percepção cooperativa capaz de melhorar a estimativa da bola e a auto-localização.

Palavras Chave

Fusão Sensorial Descentralizada, Filtro de Partı́culas Distribuido, Modelos de Misturas de

Gaussianas, Tracking em 3D, RoboCup

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Main contributions . 3

1.4 Dissertation outline . 3

2 Background and Related Work 5

2.1 3D Visual Tracking . 6

2.2 Distributed Sensor Networks . 6

2.3 Data Fusion Techniques . 7

3 Probabilistic World Perception 9

3.1 Self-Localization . 10

3.2 Ball Detection and Tracking . 11

3.2.1 3D Projection Model . 11

3.2.2 Observation and Motion . 13

4 Cooperative Perception in Mobile Sensor Networks 17

4.1 Information Representation . 18

4.2 Mobile Cooperative Sensor Model . 20

4.2.1 Local Filter . 22

4.2.2 Team Filter . 24

4.2.3 Improving Self-Localization . 26

5 Results 29

5.1 Experimental setup . 30

5.2 Ball Tracking . 30

5.2.1 Arbitrary Color Ball Tracking with a Moving Robot 30

5.3 Cooperative Perception . 31

5.3.1 Generating Compact Information Representations 31

5.3.2 Fusing Data with Agreement . 33

vii

Contents

5.3.3 Fusing Data with Disagreement . 33

6 Conclusions and Future Work 41

6.1 Conclusions . 42

6.2 Future Work . 42

viii

List of Figures

3.1 A false kidnapping situation occurs due to sensor noise while the robot is being

pushed. In the end it led to an incorrect posture by the MCL algorithm. (a) Real

starting location. (b) Location at the time false kidnapping was detected. (c) Real

end point. (d) All particles convey to the same posture. (e) Particles trying to

recover from kidnapping. (f) Final posture estimate. 11

3.2 Vision system. (a) Omnidirectional 185◦ view image. (b) Front 160◦ wide view image. 12

3.3 Ball contour projections. (a) 3D ball points projected to obtain the 2D contour at

different positions. The black line connects the projection center to the ground

plane. (b) Points modeling the hypothetical ball contour (red) and points used to

select inner and outer boundary pixel sets (black). 13

4.1 Mobile Cooperative Sensor Model . 22

4.2 Resampling step. (a) We sample from a proposal distribution g that comprises our

and the other robots ball belief, where there is likely to exist common correlated

information. (b) Sample weights are updated according to the observation model.

(c) Particles are redistributed according to their weights and the new density distri-

bution approximates the target density f. Therefore eliminating the risk of producing

an over confident estimate since it depends always on the weight of the samples

given by the local observation model, rather than the density of the proposal distri-

bution. 23

4.3 Local Filter running the ball tracking distributed particle filter. (a) Blue robot is track-

ing the ball while its teammates are tracking a fake similarly shaped ball. (b) After

communicating their target density, all robots have a similar proposal distribution.

(c) On Update, the importance factor is re-calculated for each of the particles drawn

from the proposal distribution and only the best ones ”survive”. 24

ix

List of Figures

4.4 Improving robot localization. (a) The robot tracks the ball in the local frame (Local

Filter) but its localization sensor observations (line detection) have a large mis-

match to the sensor model, indicating a low likelihood posture estimate. (b) Team-

mates communicate their target density in the world frame and the robot is able to

compute the ball team estimate (Team Filter) realizing it disagrees with the local

one. (c) From its known pose with respect to the ball local estimate, it computes

new pose hypothesis (proposal distribution) with respect to the ball team estimate.

(d) A better pose that maximizes the sensor model likelihood is achieved and the

Local and Team Filter have reached an agreement. 27

5.1 Cooperative Perception Model implementation in ISocRob software architecture . 31

5.2 Tracking a white ball with a moving robot. (a) Detection of a white ball based on the

object-to-background dissimilarity, where the blue crosses mark the pixels used to

build the background histogram. (b) Plot of the paths of robot and ball. The robot

starts in the middle circle facing opposite to the ball. The gray circles represent

the robot’s pose while the red dots represent the ball localization, here in a 2D

representation only. 32

5.3 Computing GMMs: Single Gaussian. (a) Top field camera view. (b) Robot view. (c)

Standard deviation ellipse of the computed gaussian, ball particle set (red crosses)

and robot pose. (d) Approximation of the ball particle representation. 34

5.4 Computing GMMs: 2 mixture components. (a) Standard deviation ellipses of the

computed modes. (c) Approximation of the ball particle representation. 35

5.5 Computing GMMs: 4 mixture components. (a) Standard deviation ellipses of the

computed modes. (c) Approximation of the ball particle representation. 36

5.6 Computing GMMs: 10 mixture components. (a) Standard deviation ellipses of the

computed modes. (c) Approximation of the ball particle representation. 37

5.7 Computing GMMs: Propagating uncertainty. (a) Top field camera view. (b) Robot

view. (c) Standard deviation ellipse of the computed modes. The robot pose is less

certain (MCL particles are more scattered) and because it’s also far from the ball,

the error is propagated to the ball target density (red crosses). (d) Approximation

of the ball particle representation. It is clear that the error is captured by the GMM. 38

5.8 GMM Data Fusion with Agreement. (a) Top field camera view. (b-c) Robot omni2

tracks the ball, computes it’s GMM and broadcast it. (d-e) Robot omni3 that tracks

the ball, and also computes it’s GMM and broadcast it. (f) The goalkeeper (omni1)

tests received GMMs for disagreement and computes GMM CI. (g) The final fused

GMM is consistent. 39

x

List of Figures

5.9 GMM Data Fusion with Disagreement. (a) Top field camera view. (b) Robot omni4

tracks the ball and broadcasts its GMM, but is not well localized. (c-f) Robots

omni2 and omni3 track the ball, compute their GMMs and broadcast it. (g-h) The

goalkeeper (omni1) tests received GMMs for disagreement and computes GMM CI

only for those that are in agreement. 40

xi

List of Figures

xii

List of Tables

4.1 Expectation Maximization algorithm for GMM parameter estimation 21

5.1 Average execution time while computing GMMs with our EM implementation for

12000 particles . 31

5.2 Distance measurements between the GMMs received by robot omni1 33

xiii

List of Tables

xiv

Acronyms

CI Covariance Intersection

DDF Decentralized Data Fusion

EPM Equidistance Projection Model

EM Expectation Maximization

GMM Gaussian Mixture Model

IPP Intel Performance Primitives

ISocRob Intelligent Soccer Robots

ISR Institute for Systems and Robotics

IST Instituto Superior Técnico

MeRMaID Multiple-Robot Middleware for Intelligent Decision-making

MCL Monte Carlo Localization

MKL Math Kernel Library

MSL Middle Size League

pdf Probability Density Function

PF Particle Filter

xv

1
Introduction

Contents
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Main contributions . 3
1.4 Dissertation outline . 3

1

1. Introduction

The need for knowledge concerning the external world has always been a fundamental issue in

the history of mankind. Human beings have a special mechanism for acquiring this knowledge,

known as sense perception. Autonomous systems must be able to carry out a similar task in ob-

taining an internal description of the external environment. This is obtained from the use of sensor

devices that generate measurements as a function of received signals or stimulus. However, a

single sensor does not always provide to the system all the required information that enables it

to update its own model of the world in a reliable way. Naturally, the need for multiple sensors

derives from the need of providing a better and more precise understanding of the environment.

Multisensor Fusion addresses the problem of combining all the information from multiple sensors

in order to yield a consistent and coherent description of the observed environment. The prob-

lem itself comes from the fact that the sensors information is always uncertain, usually partial,

occasionally incorrect and often geographically or geometrically incomparable with other sensor

views.

Multisensor systems have been applied to several areas such as aerospace, military, au-

tomated manufacturing, process control, power generations and robotics. This work focus on

robotics, where the word ”sensor” has nowadays a broader sense. When operating in a complex

unstructured environment, a team of cooperative robots becomes in fact a team of sensors, each

making observations to build a perception of reality that can be improved by others. A sensor

model describes the uncertainty associated with each observation allowing to extract relevant

information, rather then simple raw data from a physical device. This can be achieved by both

probabilistic or non-probabilistic techniques. We take the probabilistic approach and represent

the sensor model as a probability density function (pdf).

Robots act as mobile sensors that are part of a network where each node communicates with

other by means of a wireless communication medium. This can either be a common communica-

tion facility with broadcast or a point-to-point architecture. Sensor fusion can be concentrated in

one single node or distributed across all the nodes. The best network topology must be chosen

according to the application at hand.

1.1 Motivation

Although it aims at modeling generic mobile multisensor systems, the following work focus

on the specific application to soccer robotics. It was developed under the ISocRob project [1]

for omnidirectional robots playing in the RoboCup Middle Size League (MSL). Soccer robots are

equipped with an omnidirectional camera with limited resolution that hardly provides a global view

of the field. Our main motivation is to take real advantage of this team of mobile sensors scattered

across the field, in order to provide a broader view while locating and tracking the ball. We are

further motivated in benefiting from a multisensor system upon the challenges constantly imposed

2

1.2 Objectives

by RoboCup such as the global localization in a symmetric environment or the tracking of the (yet

to come) arbitrary color ball.

1.2 Objectives

We aim at developing a cooperative sensor fusion model for mobile robots acting in dynamic

environments. Our case study is the RoboCup MSL, where we will implement a shape-based

3D tracker for the target at hands: the ball. Furthermore, we aim at conceiving a more accurate

probabilistic representation of the information shared between sensors, that copes with nonlinear

sensor models. We will then take particle filters, Gaussian Mixture Model and a decentralized

Bayesian approach to propose a cooperative sensor model that improves ball tracking and self-

localization.

1.3 Main contributions

Our main contributions in the following work are:

• the extension and application to mobile robots of the previous work of Taiana [2] on 3D

model-based tracking with particle filters;

• a framework for representing and measuring disagreement of sensor information based on

Gaussian Mixture Models;

• a cooperative sensor fusion model based on a particle filter perception framework.

1.4 Dissertation outline

In Section 2 we review the current state of the art concerning three major topics addressed

in this thesis and its evolution in RoboCup: 3D visual tracking for moving objects, distributed

sensor networks and data fusion techniques used to combine multiple information. In Section 3

we describe the two components of our sensor fusion model: the self-localization method already

in use in the ISocRob omnidirectional robots, and the implementation of the ball detection and

tracking algorithm. Then in Section 4 we present a compact sensor information representation

based on GMMs and introduce a decentralized Bayesian approach to multisensor fusion that

takes advantage of distributed particle filters and GMM modeling. In Section 5 we describe our

experimental setup and present several experimental results to validate the introduced methods.

Section 6 outlines our conclusions and future work.

3

1. Introduction

4

2
Background and Related Work

Contents
2.1 3D Visual Tracking . 6
2.2 Distributed Sensor Networks . 6
2.3 Data Fusion Techniques . 7

5

2. Background and Related Work

2.1 3D Visual Tracking

Up until recently, all elements of a RoboCup game had distinct colors, such as blue and yellow

goals and an orange ball, and so most detection and tracking methods were based on color

domain approaches. Furthermore, the tracking problem was made in 2D, for there was no need

to go further since the ball was always played at ground level. Over the years, RoboCup as always

pushed the rules one step further in order to increase the complexity of the challenge. New rules

made it hard for color domain approaches to succeed with the inclusion of natural light over the

field and uncolored goals. Although extremely fast, object detection algorithms relying strictly

on color classification such as [3], using solid look up tables for image labeling, were no longer

accurate nor reliable. At this point, the object shape was introduced as a plausibility measure

such as the one implemented in [4] by a spline calibration curve which points out the pixel size of

the ball at different distances.

Moreover, the introduction of new powerful kickers allowed the robots to kick the ball way

above ground floor, making it to bounce all over the field. With a stereo vision system composed

of one omnidirectional and one perspective camera Hafner et al. [5] determined the ball three

dimensional position by geometric reasoning, finding the closest point to two skewed lines which

are defined from the two camera images. However, stereo vision systems require for the object to

be found in both camera images, and even tho the robot is always trying to face it, typically, a ball

above 1 meter cannot be seen on the omnidirectional camera image.

Objects motion follows the laws of physics, so defining an appropriate dynamic model for

the target is crucial. Prior work for the calculation of the ball movement used a Kalman filter to

estimate both position and velocity. This is based on the assumption of linear ball movement

with constant velocity, making it hard to track the ball when sudden changes in the movement

occurs, i.e., kicking our bouncing. Instead, Lauer et al. [6] proposed the use of a direct approach

that recalculates the motion parameters every iteration directly from the latest observations. Also

to address this issue, a very wide spread approach is the use of particle filtering. Taiana [2]

implemented a system based on particle filter, comprising a 3D shape model and a 3D motion

model, using either an omnidirectional or a perspective camera.

2.2 Distributed Sensor Networks

The problem of detecting and tracking moving objects in distributed sensor networks has been

widely studied. Such networks comprise a multi-sensor system employing several sensors to

obtain information about a real world environment full of uncertainties. Each sensor is part of

a network node which has local computational power and is able to communicate with nearby

sensors. Different network architectures correspond to different information fusion algorithms that

can be reduced to three general categories: centralized, hierarchical and decentralized. In cen-

6

2.3 Data Fusion Techniques

tralized architectures, data fusion computational load and communications are carried out by a

single central processor. Therefore it is brittle because it possesses a single point of failure. Hi-

erarchical architectures ease the computational load by aggregating sensors information in local

fusion centers, and then passing the local fused data to the central fusion processor. Yet, global

information depends on one single unit. These drawbacks are solved by using decentralized ar-

chitectures, where all fusion processes take place locally and no global knowledge of the network

is required a priori. However, communications overheads are higher than in other topologies.

Detailed description, advantages and limitations of these architectures can be found in [7], [8].

In the RoboCup domain, first approaches on distributed sensor fusion were based on cen-

tralized architectures. Dietl et al. [9] [10] implementation to globally perceive the ball and other

players position was based on fusing robots observation in a central computer outside the soc-

cer field. In fact, most data fusion algorithms have been developed for centralized topologies

because it’s considered an optimal approach if one discards communication problems and has

enough computational resources [11]. On the other hand, one can only take real advantage of

hierarchical architectures on large scale systems, such as the rescue simulation league scenario,

where it’s possible to create several fusion layers [11]. New rules to break communications with

exterior elements now impose for decentralized topologies or centralized based topologies with a

dynamic leader node [12]. Several teams have taken the decentralized way for a fully multi-agent

approach [3] [4] [5] [13]. However, the implementations described rely mostly on parametric sen-

sor models which do not overload communications when passing information on sensor belief

or observations. We propose a decentralized approach based on a probabilistic framework from

non-parametric sensors, where communication constraints must be taken into account.

2.3 Data Fusion Techniques

Most of the previous work on RoboCup focus on merging the ball to one consistent estimate

among the team of robots. Lau et al. [14] simply calculate the mean and standard deviation of

all ball estimates for discarding outliers and then assumes the ball information of the teammate

closest to it. Ferrein et al. [15] describe a weighted mean of the estimates according to the

distance from the robot to the ball and a time factor denoting how long ago the robot has seen the

ball for the last time. On a more probabilistic approach, Stroupe et al. [16] represent ball estimates

as a two-dimensional gaussian in canonical form, allowing to merge them by multiplication, and

use a Kalman filter to predict the ball position. Pinheiro and Lima [17] implemented a multi-

Bayesian team of robots as a direct application of the sensor fusion method introduced by Durrant-

Whyte [7]. This allowed for team members to achieve more frequent cooperation, so as to detect

sensors disagreement based on the Mahalanobis distance and achieve a team consensus faster.

Other approaches also accounted for merging weighted gridcells from ball occupancy maps [18],

7

2. Background and Related Work

Monte Carlo (ball) localization [19] or a combination of Kalman filter with Markov localization [9].

However, although mentioned in some approaches, none of these take real consideration in the

robots own localization estimate, frequently assuming a high accuracy self-localization method.

Pahliani and Lima [20] introduced a new cooperative localization algorithm that reduces the

uncertainty of both self-localization and object localization. This method tries to overcome the

performance of two popular algorithms for fusing sensor observations: Linear Opinion Pool and

Logarithmic Opinion Pool. The implementation although, is based on multi-robot Markov Local-

ization and assumes one can distinguish and locate different team-mates, which is a complex task

given the current RoboCup environment.

On other domains, Rosencrantz, Gordon and Thrum [21] proposed a scalable Bayesian tech-

nique for decentralized state estimation with distributed particle filters using a selective communi-

cation procedure over the particle set. On the other hand, instead of selecting which particles to

communicate, Durrant-Whyte et al. [22] demonstrated the validity of approximating a particle set

using Gaussian mixture models or Parzen representations in DDF systems.

8

3
Probabilistic World Perception

Contents
3.1 Self-Localization . 10
3.2 Ball Detection and Tracking . 11

9

3. Probabilistic World Perception

3.1 Self-Localization

The current self-localization method is based on the previous work of Messias, Santos, Estilita

and Lima [23], in which we combine Monte Carlo Localization with gyrodometry and line points

extraction. MCL has rapidly become one of the most popular approaches to the localization prob-

lem since it’s introduction by Fox in 1999 [24]. The algorithm consists in the implementation of the

particle filter applied to robot localization, representing the belief bel(lt) by a set of M weighted

samples or particles Rt = {r[1]t , r[2]t , ..., r[M]
t }. MCL derives from the basic Markov Localization al-

gorithm therefore, the belief bel(lt) over all possible postures is obtained recursively over bel(lt−1)

every time a new movement is performed (prediction) and a new sensor measurement is taken

(update). The particle set constitutes a discrete approximation of the belief function where each

sample rt contains a posture information (x, y, θ) and a numerical weighting factor w. When the

robot moves, new samples are generated, each by randomly drawing from the the previous com-

puted particle set with likelihood determined by w. Each new particle posture is then updated

according to the motion model. For a new sensor measurement, all sample weights are updated

according to the sensor model. With MCL we can approximate the posterior to any distribution of

practical importance. This means that we are not bounded to a parametric subset of distributions,

such as in the localization approaches based on Kalman Filter.

Some improvements have been made since the first implementation in [23]. A method for

iteratively improving the pose estimation based on forces exerted by the model lines over the

transformed line points, as described in [25], was implemented. For this work implementation

we had to ease computational load by modifying the line points extraction algorithm to process

smaller images with half the resolution. Also, to prevent the computation of delayed sensor data

we establish a simple synchronization protocol that discards outdated sensor information. This

improvements allowed for a faster and more accurate localization method, keeping track of the

robot posture with only 20 particles.

One of the issues that affects MCL performance is the ability to recover from failures. When

a robot believes it is localized it means that only the particles near the most likely posture have

”survived”. If the most likely posture happens to be incorrect, the algorithm must be able to recover

from it, otherwise the robot won’t localize itself anymore. This is often referred in the literature

as the kidnapping problem and is the hardest problem to solve in global localization [26]. Our

approach deals with kidnapping by adding a variable number of uniformly distributed particles to

the sample set, that depends directly on the mismatch between sensor measurements and sensor

model. However, during RoboCup game situations this proved to be a risk solution. Due to sensor

noise and the dynamic environment, sensor model mismatch has a large fluctuation which leads

the algorithm to sometimes ”jeopardize” the localization by assuming false kidnapping situations,

as shown in fig. 3.1. To prevent this, a new approach to deal with global localization failures will

10

3.2 Ball Detection and Tracking

(a) (b) (c)

(d) (e) (f)

Figure 3.1: A false kidnapping situation occurs due to sensor noise while the robot is being
pushed. In the end it led to an incorrect posture by the MCL algorithm. (a) Real starting lo-
cation. (b) Location at the time false kidnapping was detected. (c) Real end point. (d) All particles
convey to the same posture. (e) Particles trying to recover from kidnapping. (f) Final posture
estimate.

be proposed further in 4.2.

3.2 Ball Detection and Tracking

3.2.1 3D Projection Model

ISocRob robots have a dioptric vision system with a camera facing downwards. The camera

has a fish-eye lens providing a field-of-view of 185◦, and therefore gives the robot an omnidirec-

tional view in the azimuth direction, as observed in fig. 3.2(a). Although providing the capability

to extract information from a 360◦ view of the environment, the image resolution is much higher

near the robot, making it impossible to perform a reliable detection of a ball at more than 5 meters

away. Given the current official field size (18m× 12m), one should be able to detect more distant

objects. To do so, we have installed a new camera facing forward also coupled with a fish-eye

lens. On front, we aim at having a wide angle of view along the horizontal azimuth direction angle,

therefore using a camera with a smaller CCD sensor format (1/3′′) we get a field-of-view of 160◦,

see fig. 3.2(b).

Most common fish-eye lens are designed to obey the Equidistance Projection Model, de-

scribed as:

r = fθ (3.1)

11

3. Probabilistic World Perception

(a)

(b)

Figure 3.2: Vision system. (a) Omnidirectional 185◦ view image. (b) Front 160◦ wide view image.

where θ is the angle between the principal axis and the incoming ray, r is the distance between

the image point and the principal point and f is the focal length.

The ball identification in the image is based on Taiana [2] ball projection model. A 3D model of

the ball is used to calculate its 2D contour projected on the image. The ball has rotational symme-

try which reduces the problem dimension for there is no need to consider the object orientation.

If one considers the polygonal model of a sphere, the ball contour on the image plane lies on the

intersection with an orthogonal plane to the line connecting the projection center to the center of

the sphere (Fig. 3.3(a)).

The 3D contour is sampled by a set of points equally distributed along a circle with a radius

equal to the ball (Fig. 3.3(b)). By rotating and shifting an initial set of 3D contour points, according

to the ball position, and assuming the EPM (3.1), we obtained the 2D contour in the image frame.

12

3.2 Ball Detection and Tracking

(a) (b)

Figure 3.3: Ball contour projections. (a) 3D ball points projected to obtain the 2D contour at
different positions. The black line connects the projection center to the ground plane. (b) Points
modeling the hypothetical ball contour (red) and points used to select inner and outer boundary
pixel sets (black).

3.2.2 Observation and Motion

Given a 3-dimensional position, the previous described projection model tell us how the ball

contour is going to look in the image. However, to track it, one needs to estimate the ball’s location

with respect to the robot. For that we use a particle filter to represent the ball’s state space regard-

ing position and velocity xt = [x, y, z, ẋ, ẏ, ż]T . We start by assuming a simple Markov process

for the underlying dynamics of the ball specified by a transition probability, from herein denoted

as motion-model, p(xt|xt−1), and that for every time step t > 1 a new observation zt about the

state xt is made. Given the observation history at time t by Zt = [z1, ..., zt] our goal is to estimate

the posterior distribution p(xt|Zt) for each time step. As introduced earlier in 3.1 this can be done

recursively over Prediction and Update:

p(xt|Zt−1,ut−1) =

∫

p(xt|xt−1)p(xt−1|Zt−1)p(xt−1|ut−1)dxt−1 (3.2)

p(xt|Zt) ∝ p(zt|xt)p(xt|Zt−1,ut−1) (3.3)

where p(xt−1|Zt−1) is the previous estimate and p(zt|xt) is the observation model. At a given

moment in time t, the particle filter represents the probability distribution of the state as a set

of M weighted samples {x(i)
t , w

(i)
t } M

i=1 , such that the posterior is approximated by an empirical

estimate:

p(xt|Zt) ≈

M
∑

i=1

w
(i)
t δ(xt − x(i)

t) (3.4)

where δ(.) is the Dirac delta function. The estimation of the best state is computed through a

discrete Monte Carlo approximation of the expectation:

x̂
.
=

1

M

M
∑

i=1

w
(i)
t x(i)

t (3.5)

13

3. Probabilistic World Perception

As described in [26], the basic operation of a particle filter is to recursively estimate the posterior

via a sequence of sampling, importance weighting and resampling, so the tracking algorithm

performs in three steps: Prediction, Update and Resampling.

Prediction computes an approximation of p(xt|Zt−1) by moving each particle according to the

ball motion model. We assume a constant velocity model where the motion equations correspond

to a uniform acceleration during one time step:

xt =

[

I (∆t)I
0 I

]

xt−1 +

[

(∆t2

2)I
(∆t)I

]

at (3.6)

where I is the 3 × 3 identity matrix, ∆t = 1, and at is a 3 × 1 white zero mean random vector cor-

responding to an acceleration disturbance. The state of the ball is expressed in a real-world robot

centered coordinate system. However, if the robot is moving one should first consider its kinematic

configuration. For robots moving on an horizontal plane, as considered here, roll and pitch angles

can be discarded. The robot state or pose, rt, can be described by its two-dimensional Carte-

sian coordinates and the angular orientation [rx, ry, rθ]
T . The posterior distribution over the robot

states is given by p(rt|ut, rt−1), where rt−1 is the robot pose at the previous time step and ut is

a motion control command given by odometry. Although technically odometry consists of sensor

measurements, it is common practice to use it as control data since it’s only available after the

robot moved and its main information regards the actual change of the robot pose. One must also

consider the inherent noise in robot actuation, as drift and slippage tend to induce unmeasured

perturbation.

In order to consider this realistic ball motion model we need to have an inertial reference

frame. Our previous work [27] describes the state of the ball expressed in the world reference

frame, while the robot localization is taken into account in the observation model to compute the

ball contour projection onto the image plane. However, this highly depends on the accuracy of

the self-localization method, which can be troublesome. One can also just consider the robot

reference frame by clearly separating the ball and the robot motion, and assume the robot does

not undergo acceleration while we apply the ball motion dynamics. In fact, this assumption is valid

since we only apply the ball motion dynamics when an image is captured, and we can consider

that the robot is stopped while capturing it. That is, the simplification of the above described

ball’s motion dynamics remains, if one accounts for the robot’s reference frame movement in

the particles state representation xt. We compute the particles state given by the reference

coordinate transformation yield by the robot’s motion, here modeled as a Gaussian with mean

ū = [δx, δy, δθ]
T and covariance matrix Σ, as

xt = Trotxt−1 + Tshiftūt−1 (3.7)

14

3.2 Ball Detection and Tracking

where

Trot =

[

Rp 0

0 Rv

]

, Tshift =
[

S 0
]T
. (3.8)

and Rp and Rv are the object location (x,y,z) coordinates transformation matrix and the velocity

vector (ẋ,ẏ,ż) inverse rotation matrix respectively, while S represents the reference frame shift

Rp = Rv =

cos(δθ) sin(δθ) 0
− sin(δθ) cos(δθ) 0

0 0 1

 , S =

−1 0 0
0 −1 0
0 0 0

 . (3.9)

As such, if the tracked object’s state is centered on a moving reference frame, the prediction

step should compute an approximation of p(xt|ut−1) every time a new odometry measurement is

obtained.

In the Update step, the particle’s weights are updated according to the computed likelihood

p(zt|x
(i)
t) for each hypothesis, from the observation model. We follow Taiana’s [2] approach to

compute the likelihood as a function of similarities between color histograms. We compute two

YUV histograms for the inner and outer boundaries of the ball 2D projection contour and apply

the Bhattacharyya [28] similarity metric. In order to track arbitrary color balls, we do not define

a reference color model for the inner boundary and rely strictly on its mismatch to the outer

boundary, that is the object to background dissimilarity.

The particles that have a higher weight are replicated in the Resampling step, and the rest of

the particle set is discarded. To prevent the loss of diversity in the particle population, we use a

low variance resampling technique described in [26].

In order to track the ball, one first needs to detect it. So the particle filter needs an initial

distribution of particles. However, when aiming at a solution that does not rely at all on object’s

color, a color segmentation detection module as proposed in [2] is not appropriate. Therefore, we

initialize our tracker by uniformly spreading a fixed number of ball hypothesis on the ground, in

a 5 meter area surrounding the robot. This enable us to reduce the search state space, as we

assume the ball is on the floor, and constrain the detection according to the camera resolution.

As such, one can say we make the detection in 2D and from there we track in 3D.

15

3. Probabilistic World Perception

16

4
Cooperative Perception in Mobile

Sensor Networks

Contents
4.1 Information Representation . 18
4.2 Mobile Cooperative Sensor Model . 20

17

4. Cooperative Perception in Mobile Sensor Networks

4.1 Information Representation

In sensor networks, the sensor measurement models are often nonlinear resulting in non-

Gaussian posterior distributions. However, a parametric (e.g. Gaussian) approximation of sensors

information is usually a better choice given the low computational power and low communications

bandwidth it requires when sharing information. This is achieved at the cost of a limited represen-

tation of the sensors belief. Non parametric discrete approximations, such as the ones described

in 3, are able to capture arbitrarily complex uncertainty, but are intractable when it comes to

communicating the state distribution due to the necessity of transmitting a large sample-based

representation.

The conversion of the sample-based representation to a continuous distribution requires the

use of methods such as kernel density estimation, but in order to achieve efficient communica-

tion a parametrization of the probability density function is, in fact, mandatory. A mixture model

provides this type of representation and can also be viewed as a type of kernel method [29]. If

the kernel function of the mixture model is Gaussian, the distribution is expressed as a Gaussian

Mixture Model (GMM) of the form:

P (x) =

N
∑

k=1

wkG(x|µk,Σk) (4.1)

where x are the observations of the random variable X, wk are positive weights such that
∑N

k=1 wk =

1, G is a Gaussian probability density (Gaussian mixture component) with mean µk and covari-

ance Σk, and N is the total number of mixture components. This pdf approximation method treats

the set of estimates as a sum of Gaussian probability distributions. Since the particles state is

expressed in a d-dimensional space, the Gaussian distribution of state x with mean µ and covari-

ance Σ is defined as:

P (x|µ,Σ) =
1

(2π)
d
2 |Σ|

1

2

exp− 1

2
[X−µ]T Σ−1[X−µ] (4.2)

For the GMM to be of practical importance both for data fusion and communications, the den-

sity estimation technique, which will lead to the parametrization of the mixture model, must be

computationally fast and accurate.

Suppose one is able to extract from the particle set which particle belongs to each component

yi = k. This would make our GMM parametrization a lot easier, that is, we would simply compute

the mean µk and covariance matrix Σk for each subset k of particles and a calculate an impor-

tance weight wk from the number os samples assigned to each component. However, it’s not

possible to extract such information from the observed data and therefore this is considered the

missing data for our parametrization problem. The Expectation Maximization (EM) algorithm is an

18

4.1 Information Representation

efficient iterative method to the general approach of the maximum likelihood parameter estimation

in the presence of missing or unobserved data. Our main intuition while using EM is to alternate

between estimating which sample from our sample-based representation belongs to which mix-

ture component (missing data) and estimating the unknown parameters Θk = (wk, θk), where

θk = (µk,Σk), for each of those components. Each iteration of the EM consists of an expectation

step (E-step) and a maximization step (M-step). In the E-step we compute the expected likelihood

for the complete data Γ (also known as Q-function) as the conditional distribution of the missing

data Y , given the current settings of parameters Θ and the observed incomplete data X. So, using

Bayes’s rule, for each mixture component k:

p(yi = k|xi, θk) =
p(yi = k, xi|θk)

p(xi|θk)
=

p(xi|yi = k, θk)p(yi = k|θk)
∑N

k=1 p(xi|yi = k, θk)p(yi = k|θk)
(4.3)

where N is the total number of mixture components and p(xi|yi = k, θk) is, in our case, the

multivariate Gaussian probability density function from Eq. (4.2). One should also note that the

probability of a given observation being part of a k component is actually its relative weight wk in

the mixture model. Therefore we can simplify the Q-function from Eq. (4.3) as:

p(yi = k|xi, θk) =
p(xi|yi = k, θk)wk

∑N

k=1 p(xi|yi = k, θk)wk

. (4.4)

In the M-step we re-estimate the mixtures parameters Θ by maximizing the Q-function, see [29],

[30] for the in-depth derivation. From here we can compute Θ′ for each component k:

µ′
k =

∑M

i=1 xip(yi = k|xi, θk)
∑M

i=1 p(xi|yi = k, θk)
(4.5)

Σ′
k =

∑M
i=1 p(xi|yi = k, θk)(xi − µ′

k)(xi − µ′
k)T

∑M

i=1 p(xi|yi = k, θk)
(4.6)

where M is the number of total observations. The relative weight of each Gaussian mixture is

given by:

w′
k =

1

M

M
∑

i=1

p(yi = k|xi, θk). (4.7)

While EM runs iteratively through these steps, improving the parameters estimation, we test the

convergence of the algorithm from the observed data Log-likelihood function:

L(Θ) = ln p(X|Θ) = ln

N
∑

k=1

M
∑

i=1

p(xi|yi = k, θk)p(yi = k|θk) (4.8)

19

4. Cooperative Perception in Mobile Sensor Networks

by maximizing the difference between the current estimate Θ and the estimation update we wish

to compute Θ′ (since we want L(Θ′) > L(Θ)):

L(Θ′) − L(Θ) = ln(

N
∑

k=1

M
∑

i=1

p(xi|yi = k, θ′k)w′
k) − ln p(X|Θ) (4.9)

We must assume convergence if L(Θ′) − L(Θ) < ψ for a given threshold ψ. By Jensen’s inequal-

ity [29]:

ln(
N

∑

k=1

M
∑

i=1

p(xi|yi = k, θ′k)w′
k) ≥

N
∑

k=1

w′
k ln p(xi|yi = k, θk). (4.10)

Since p(xi|yi = k, θk) is given by Eq. (4.2), for all M observations:

ln p(xi|yi = k, θk) = −
M

2
log |2πΣk| −

1

2

M
∑

i=1

(xi − µk)T Σ−1
k (xi − µk) (4.11)

For computational speed, we can further simplify Eq. (4.11) according to [31] as:

l(X|µk,Σk) = −
M

2
log |2πΣk| −

M

2
trΣ−1

k S −
M

2
(x̄ − µk)T Σ−1

k (x̄ − µk) (4.12)

where S is the covariance matrix of the observed data X. Therefore, we can compute:

L(Θ′) ≥
N

∑

k=1

wkl(X|µk,Σk) (4.13)

The convergence speed however is very dependent of the initialization of Θ, and can be very slow

if the initial parameters are particulary bad compared to the true values. Clustering algorithms

based on the k-means implementation have proven to have reasonable results in the parameter

initialization, ensuring only a few iterations before convergence [22]. Table 4.1 depicts initialization

(lines 1 to 7) and the rest of the previously described EM implementation in pseudo-code.

4.2 Mobile Cooperative Sensor Model

More than deriving and applying an efficient multi-sensor data fusion technique, such as the

ones described earlier in Section 2.3, our work aims at developing an adequate model to fuse and

improve mobile sensors belief in a decentralized network operating on dynamic environments. Un-

like in static environments, the state of the targets can change over time so we can only combine

sensor observations gathered simultaneously. Furthermore, in fully DDF systems the topology of

20

4.2 Mobile Cooperative Sensor Model

Table 4.1: Expectation Maximization algorithm for GMM parameter estimation

Algorithm ExpectationMaximization (X, nModes)
1: cluster = k-means (X, nModes)
2:
3: for k = 1 to nModes do
4: µk = mean(clusterk)
5: Σk = cov (clusterk)
6: wk = size(clusterk)/size(X)
7: endfor
8:
9: while (ln − ln−1) > ψ
10: for k = 1 to nModes do
11: E − step : compute p(yi = k|xi, θk)
12: endfor
13:
10: for k = 1 to nModes do

13: M − step : µ′
k =

∑M
i=1

xip(yi=k|xi,θk)
∑

M
i=1

p(xi|yi=k,θk)

14: Σ′
k =

∑

M
i=1

p(xi|yi=k,θk)(xi−µ′

k)(xi−µ′

k)T

∑

M
i=1

p(xi|yi=k,θk)

15: w′
k = 1

M

∑M

i=1 p(xi|yi = k, θk)
16: endfor
17: ln =

∑nModes
k=1 wkl(X|µ′

k,Σ
′
k)

18: endwhile
19: return µ′

k,Σ
′
k, w

′
k

the network is unknown and so we are forced to deal with the problem of ”double counting”. This

implies the removal of common information between the received and the local estimate in order

to avoid an over-confident final estimate.

So the decentralized sensor fusion typical approach is to build one single estimate of the

target, regardless of whether it’s being tracked by the local sensor or not, and always assume

that in the worst case we are improving the local error resulting in a more accurate estimate. This

is perfectly valid if the sensor is not moving or if we can assume a highly accurate localization

system, which is not often the case. Even so, previous work shows that the robot localization

uncertainty can be taken into account while propagating it to the sensors belief [20], achieving an

accurate and more consensual team estimate. Still, we are implicitly assuming that the result of

the fusion process is more relevant than the local sensor observations. We propose a different

approach that consist of not taking other sensors beliefs for granted, and instead use them as if

they were observations gathered by the local sensor (virtual observations).

From the previously described particle filter based world perception framework in chapter 3,

we present herein a cooperative perception model that copes both with a local sensor-distributed

estimate of the object and a fused team estimate, naturally deals with the correlation between

common information and can be used to improve self-localization. The model, based in sequential

Bayesian filtering representation, is illustrated in fig. 4.1.

In the Local Filter, observations are made and used to compute the likelihood over the sensor

21

4. Cooperative Perception in Mobile Sensor Networks

Figure 4.1: Mobile Cooperative Sensor Model

model, which then is multiplied by the prior belief in the update step. Both the local prior, predicted

from the local posterior over the previous state, and the team prior, predicted from the received

posterior distributions of the teammates, are concurrently computed at each robot. This way, the

other robots information will only influence the prior belief and posterior will be given according to

the local sensor measurement model. The Team Filter will fuse all the teammate beliefs into one

parallel target estimate and, while it doesn’t receive new information, will keep predicting over the

previous state from the last received ball velocity. This parallel team estimate is to be used only

in critical conditions when the target is out of the sensor field of view. Keeping these two (local

and team) estimates of the same target allows to improve robot localization when its uncertainty

is too high, since we can infer a prior belief with respect to the target location on the world frame

and the robot frame.

4.2.1 Local Filter

In our case we are interested in detecting and tracking a ball with the particle filter already

described in Section 3.2 so we must implement the Local Filter as a discrete Bayes filter. In the

update step, we sample from the Bayes prior distribution, denoted from here and henceforth as

the proposal distribution bel(xt), and our goal is that the weighted particle set approximates the

Bayes posterior, denoted from here and henceforth as the target density bel(xt). Upon resam-

pling, the particles are distributed according to the posterior:

22

4.2 Mobile Cooperative Sensor Model

(a) (b) (c)

Figure 4.2: Resampling step. (a) We sample from a proposal distribution g that comprises our
and the other robots ball belief, where there is likely to exist common correlated information. (b)
Sample weights are updated according to the observation model. (c) Particles are redistributed
according to their weights and the new density distribution approximates the target density f.
Therefore eliminating the risk of producing an over confident estimate since it depends always
on the weight of the samples given by the local observation model, rather than the density of the
proposal distribution.

bel(x[m]
t) = ηp(zt|x

[m]
t)bel(xt) (4.14)

where p(zt|x
[m]
t) is the probability of measurement zt under the mth particle x[m]

t . The target den-

sity is then transformed in a compact GMM representation and passed on to the other robots.

When it is received, new samples will be drawn from it contributing for the proposal distribution.

The ability to sample is not given for arbitrary distributions, however, since our distributions can ac-

tually be decomposed in a sum of Gaussians, we can draw a random vector X = (x1, x2, ..., xn)T

from each bivariate component k with mean µk and covariance matrix Σk from:

x[n]
k = Akv

[n] + µk (4.15)

where v are n independent samples drawn from N(0, I2) and Ak is the Cholesky decomposition

of Σk, such that Σk = AAT . For each new particle x[n] we then calculate the importance factor

w as described in the ball tracking update step, Section 3.2. As such, samples generated from

received GMMs that do not follow the local observation model will have a low likelihood and will

be discarded on resampling. One should point out at this point that we are eliminating the risk of

generating an over confident estimate from common correlated information after the resampling

step, since the transmitted target distribution bel(xt) only incorporates the sender local measure-

ments zt. The resampling step is illustrated in Fig. 4.2 taken from [26] for a monodimensional

example.

23

4. Cooperative Perception in Mobile Sensor Networks

(a) (b)

(c)

Figure 4.3: Local Filter running the ball tracking distributed particle filter. (a) Blue robot is tracking
the ball while its teammates are tracking a fake similarly shaped ball. (b) After communicating
their target density, all robots have a similar proposal distribution. (c) On Update, the importance
factor is re-calculated for each of the particles drawn from the proposal distribution and only the
best ones ”survive”.

4.2.2 Team Filter

In the Team Filter we receive GMM representations, from all teammates, of the ball’s poste-

rior in the world frame. As susch, the robot’s odometry control measurement take no part in the

prediction step, only the ball velocity is relevant. Here we assume the ball velocity vt = [ẋ, ẏ] is

constant between each time step, and predict based on a received ball velocity estimate for each

GMM:

µt = µt−1 +
vt

∆t
(4.16)

After fusing all the received GMM into a posterior team estimate, if no new information arrives,

prediction will produce a less and lesser accurate estimation since no update step occurs.

Regarding information fusion, the Covariance Intersection (CI) filter yields consistent estimates

to the problem of combining different Gaussian random vectors with unknown correlation between

them [32]. This can be extended to a GMM Covariance Intersection algorithm as in [22], by per-

forming CI between each of the mixture components. The fusion between the ith component of

a GMM and the jth component of another GMM will result in a Gaussian mixture with N × N

components, such that:

24

4.2 Mobile Cooperative Sensor Model

Σ−1
ij = γΣ−1

i + (1 − γ)Σ−1
j (4.17)

µij = Σij(γΣ
−1
i µi + (1 − γ)Σ−1

j µj) (4.18)

wij =
1

N
(γwi + (1 − γ)wj) (4.19)

where 0 ≤ γ ≤ 1 is a weighting parameter to minimize the determinant of the result.

When associating data in distributed systems, an incorrect association decision leads to an

incorrect fusion estimate, therefore one needs to have the ability to measure agreement among

disparate sensors before fusing their observations. We assume there’s an agreement between

two received GMMs G1 and G2 if:

D(G1, G2) ≤ ξ (4.20)

where D(.) is a distance metric between both GMMs and ξ is a positive threshold. A distance

measure between Gaussian distributions can be defined as Kullback-Leiber distance [33], Bhat-

tacharyya distance [28] and others. However there’s no analytical solution of computing these

measures to evaluate the distance between Gaussian mixture models. Therefore, we take Beigi

et al. [34] approach to measure distances between collections of distributions in speech recogni-

tion, and define our measure of divergence between GMMs as:

D(G1, G2) =

∑N

i=1W
1
i +

∑N

j=1W
2
j

∑N

i=1 ci +
∑N

j=1 cj
(4.21)

Consider the matrix of distances between N ×N mixture componentes:

T =

d11 d12 ... d1N

d21 d22 ... d2N

...
dN1 dN2 ... dNN

(4.22)

W 1
i is the minima of the elements in the row times the row number ci. Likewise, W 2

j is the minima

of the elements in the column times the column number cj . We can compute dij from the above

metrics for Gaussian distributions. We choose to apply the Bhattacharyya distance, given by:

dij =
1

8
(µj − µi)

T Λ−1(µj − µi) +
1

2
ln

|Λ|−1

√

|Σi||Σj |
(4.23)

for multivariate Gaussian distribution, where Λ =
Σi+Σj

2 , to compute the distance between com-

ponents of different mixtures.

25

4. Cooperative Perception in Mobile Sensor Networks

So when there is agreement, after fusing the received GMMs with CI we can compute the ball

localization from a weighted mean average of all the components means that describe the final

Gaussian mixture team estimate:

BallT eamEstimate=
N×N
∑

k=1

wk

[

µx µy

]

(4.24)

4.2.3 Improving Self-Localization

In respect to the global localization problem, most state-of-the art algorithms cannot guarantee

a full proof method that never fails [26]. The detection of a failure and the ability to recover from

it is essential for truly autonomous robots. When the robot believes it knows where it is, while

in fact it does not, it can usually figure out that something’s wrong by the disparity between the

sensor measurements and the sensor model. However, as presented in chapter 3.1 this can also

lead to false kidnapping situations when dealing with unprecise limited-view sensors that have to

cope with unsteady robot movements. To prevent this, one can also test the disparity between

a common observed target, that is the disagreement between the ball estimate observed by the

robot and the ball estimate of the teammates. So if the MCL estimate has a low likelihood and

there’s disagreement between the Local Filter and the Team Filter estimate, the robot is most

likely to be lost.

The normal approach to recover from such situation in MCL consists in gradually augmenting

the proposal distribution by systematically adding more and more particles until better observation

likelihoods can be obtained. Two major drawbacks can compromise this approach. One is the

large amount of computational power required to draw and test samples from an augmented

proposal distribution that can comprise the entire state space, which basically means a restart in

the global localization problem. The other drawback is the inability to deal with local maxima that

are present in symmetric environments, such as the RoboCup field.

Instead, one can now see the problem as feature-based map localization with known corre-

spondence, that is p(xt|f
i
t , c

i
t,m), where ft denotes a given feature that has a correspondence

ct in a list of landmarks m. Let’s consider the ball as a landmark m1. If some other robots are

localized and tracking the ball, the coordinates m1,x and m1,y of our landmark in the world frame

of the map are given by the Team Filter estimate. If the lost robot is tracking the ball relative to

its local coordinate frame (Local Filter), it can make new guesses of its own whereabouts for it

now knows it may be on a circle around the landmark. These new guesses represent new poses

that incorporate the sensor measurement p(f i
t |c

i
t, xt,m) . Basically, we can assume the robot is

completely lost and therefore the prior p(xt|c
i
t,m) is uniform. This assumption leads to:

p(xt|f
i
t , c

i
t,m) = ηp(f i

t |c
i
t, xt,m)p(xt|c

i
t,m)

= ηp(f i
t |c

i
t, xt,m)

(4.25)

26

4.2 Mobile Cooperative Sensor Model

(a) (b)

d

θ

(c) (d)

Figure 4.4: Improving robot localization. (a) The robot tracks the ball in the local frame (Local
Filter) but its localization sensor observations (line detection) have a large mismatch to the sensor
model, indicating a low likelihood posture estimate. (b) Teammates communicate their target
density in the world frame and the robot is able to compute the ball team estimate (Team Filter)
realizing it disagrees with the local one. (c) From its known pose with respect to the ball local
estimate, it computes new pose hypothesis (proposal distribution) with respect to the ball team
estimate. (d) A better pose that maximizes the sensor model likelihood is achieved and the Local
and Team Filter have reached an agreement.

from where we concluded that sampling from p(xt|f
i
t , c

i
t,m) can, in this particular case, be achieved

from p(f i
t |c

i
t, xt,m). As so, we only add a limited amount of new sample poses that derive from a

common target observation to the MCL proposal distribution. The complete process is illustrated

in fig. 4.4.

27

4. Cooperative Perception in Mobile Sensor Networks

28

5
Results

Contents
5.1 Experimental setup . 30
5.2 Ball Tracking . 30
5.3 Cooperative Perception . 31

29

5. Results

5.1 Experimental setup

This work was implemented in the ISocRob software architecture [1] in order to demonstrate

a real time application of the methods proposed with robots playing in the RoboCup Middle Size

League. The architecture is based on the Active Object design pattern. Each of these objects

retains their own execution context and execution flow, allowing to add or remove objects without

major impact over the rest of the system. The current low-level (ATLAS, see fig. 5.1) information

flow however, is not very well suited to the multisensor fusion task at hand. The issue here is

that services running on a given layer (e.g. BallFusion running on Information Fusion layer) are

not allowed to communicate with services in the same layer or beneath it. Because of that, this

implementation is forced to differ from the exact model methodology presented in Section 4.2 and

illustrated in fig. 4.1. We work around it to make it possible for the self-localization service (MCL)

to directly communicate with the Team Filter, and there we synchronize both the localization data

and the tracking ball data, in order to build a ball particle set in the world frame. It is over this set of

particles that we run EM to compute the BallGMM that is then communicated to other robots. Note

that in the presented model (Fig. 4.1) this occurs in the Local Filter rather than in the Team Filter.

The communication from Team Filter to Local Filter was solved recurring to a common information

repository (WorldInfo). This way the Local Filter is able to retrieve directly from the WorldInfo the

teammates OtherRobotsBallGMM in order to implement the distributed particle filter.

To achieve maximum processor performance, the implementation was done in C++ with ex-

tensive use of Intel Performance Primitives (IPP) for optimized vector and matrices operations

and Intel Math Kernel Library (MKL) for statistics procedures. The Local Filter and the information

framework are concluded, but some work still remains on the Team Filter at this point so we also

used Matlab to do some offline processing and validate the achieved results.

5.2 Ball Tracking

5.2.1 Arbitrary Color Ball Tracking with a Moving Robot

In this experiment the omnidirectional robot tracks a moving ball, moving while attempting to

catch it. We carried out the experience with an ordinary soccer ball, mainly white colored, as one

can see in Fig. 5.2a, but other colored balls, e.g. orange, could and have been used [27].

Images on the robot where acquired using an omnidirectional camera with a dioptric setup at

10fps. Odometry motion control measurements where obtained at 25fps and we used only 600

particles in the tracker. The results are visible in Fig. 5.2b where one can perceive the robot path

while pursuing the detected ball (arbitrary trajectory) in a global reference frame (the soccer field

centered frame).

30

5.3 Cooperative Perception

CameraFront Camera MotorsControllerOdometry RateGyro

VisionLinePoints Gyrodometry

MCL

Devices

Sensors

Information

Fusion

WorldInfo

WISDOM COMMUNICATION

putDataWI:

 - BallGMM

getDataWI:

 - OtherRobotsBallGMM

CommunicationManager

ATLAS

putDataWI:

 - OtherRobotsBallGMM

getDataWI:

 - BallGMM

Other Robots

BallTracking

LocalFilter

TeamFilter

BallFusion

Figure 5.1: Cooperative Perception Model implementation in ISocRob software architecture

Table 5.1: Average execution time while computing GMMs with our EM implementation for 12000
particles

Number of mixture components 1 2 4 10
Time taken [seconds] 0.0246 0.0690 0.1131 0.1924

5.3 Cooperative Perception

5.3.1 Generating Compact Information Representations

In this experiment we test the accuracy of the GMMs approximations with EM. First we placed

the robot stopped near the ball and tested the same scenario (figure 5.3a) with a different number

of mixture components (1, 2, 4 and 10) in order to achieve an good number od modes given the

EM time to converge and the final approximation to the particle representation. The results are

visible in figures 5.3, 5.4, 5.5 and 5.6 and the average EM run time was recorded in table 5.1.

Afterwards (figure 5.7), we placed the robot in a more uncertain location (not so close to the lines)

and further away from the ball to see how it’s pose and sensor uncertainty are propagated to the

GMM representation.

All the processing was made online with 600 particles in the ball tracker and a minimum of 20

particles in the MCL.

31

5. Results

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

[m]

[m]

(b)

Figure 5.2: Tracking a white ball with a moving robot. (a) Detection of a white ball based on
the object-to-background dissimilarity, where the blue crosses mark the pixels used to build the
background histogram. (b) Plot of the paths of robot and ball. The robot starts in the middle circle
facing opposite to the ball. The gray circles represent the robot’s pose while the red dots represent
the ball localization, here in a 2D representation only.

32

5.3 Cooperative Perception

Table 5.2: Distance measurements between the GMMs received by robot omni1
D(G2,G3) 9.6880
D(G3,G4) 200.5146
D(G2,G4) 162.7252

5.3.2 Fusing Data with Agreement

In this experiment two robots are able to locate the ball, while a third robot (the goalkeeper)

cannot (see Fig. 5.8). The robots tracking the ball compute their GMM approximation and broad-

cast it to others. As the goalkeeper receives the teammates GMM estimates, it first tests it to see

if there’s agreement, and if ok proceeds to compute a team estimate by fusing the GMMs with

Covariance Intersection.

We set the EM to compute 4 components of Gaussian mixtures since it provides an accept-

able approximation of the particle set in a short amount of time, therefore consuming less cpu

resources. Some processing was made partially off-line in Matlab, namely the GMMs disagree-

ment measuring and the GMM Covariance Intersection. We set the threshold ξ = 30 from Eq.

(4.20) in order to decide if two observers disagree.

It is clear that both robots are in agreement and our GMM distance measuring proves it:

D(G1, G2) = 10.4114 ≤ ξ. The final fused GMM is shown in Fig. 5.8f and represents the goal-

keeper ball team estimate computed in the Team Filter. We can see from Fig. 5.8g that it yields

consistency to the other robots estimates in fig. 5.8c and Fig. 5.8e.

5.3.3 Fusing Data with Disagreement

In order to test data association with disagreement, another robot as placed on the field (Fig.

5.9a). Although its able to track the ball, this robot (omni4) is not able to localize itself correctly

on the field. As such, it broadcast a GMM approximation of its erroneous ball localization belief,

since it is corrupted by its self localization belief (Fig. 5.9b).

We show the results of the fusion estimate made by robot omni1 (Fig. 5.9g, 5.9h), which is

not able to see the ball at all. The decision on which GMMs to fuse is based on the disagreement

measurement Eq.(4.20) with ξ = 30. The computed distances between each of the received

GMMs are shown is Table 5.2.

33

5. Results

(a) (b)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

−2.2
−2

−1.8
−1.6

−1.4
−1.2

−1
−0.8 −2.2

−2
−1.8

−1.6
−1.4

−1.2
−1

−0.80

2

4

6

8

10

Y [m]

X [m]

 0

1

2

3

4

5

6

7

8

9

(d)

Figure 5.3: Computing GMMs: Single Gaussian. (a) Top field camera view. (b) Robot view. (c)
Standard deviation ellipse of the computed gaussian, ball particle set (red crosses) and robot
pose. (d) Approximation of the ball particle representation.

34

5.3 Cooperative Perception

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−1.8
−1.6

−1.4
−1.2

−1
−0.8

−1.8

−1.6

−1.4

−1.2

−1

−0.8

0

2

4

6

8

10

12

14

Y [m]

X [m]

 0

2

4

6

8

10

12

(b)

Figure 5.4: Computing GMMs: 2 mixture components. (a) Standard deviation ellipses of the
computed modes. (c) Approximation of the ball particle representation.

35

5. Results

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−2
−1.8

−1.6
−1.4

−1.2
−1

−0.8
−0.6

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

0

2

4

6

8

Y [m]

X [m]

 0

1

2

3

4

5

6

7

8

(b)

Figure 5.5: Computing GMMs: 4 mixture components. (a) Standard deviation ellipses of the
computed modes. (c) Approximation of the ball particle representation.

36

5.3 Cooperative Perception

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−2
−1.8

−1.6
−1.4

−1.2
−1

−0.8
−0.6 −2

−1.8
−1.6

−1.4
−1.2

−1
−0.8

−0.6

0

2

4

6

8

10

Y [m]
X [m]

 0

1

2

3

4

5

6

7

8

(b)

Figure 5.6: Computing GMMs: 10 mixture components. (a) Standard deviation ellipses of the
computed modes. (c) Approximation of the ball particle representation.

37

5. Results

(a) (b)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

−2

−1.5

−1

−0.5

0

0.5

−2
−1.5

−1
−0.5

0
0.5

0

1

2

3

4

5

X [m]

Y [m]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(d)

Figure 5.7: Computing GMMs: Propagating uncertainty. (a) Top field camera view. (b) Robot
view. (c) Standard deviation ellipse of the computed modes. The robot pose is less certain (MCL
particles are more scattered) and because it’s also far from the ball, the error is propagated to the
ball target density (red crosses). (d) Approximation of the ball particle representation. It is clear
that the error is captured by the GMM.

38

5.3 Cooperative Perception

1 2

3

(a)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

(b) (c)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

(d) (e)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

(f) (g)

Figure 5.8: GMM Data Fusion with Agreement. (a) Top field camera view. (b-c) Robot omni2
tracks the ball, computes it’s GMM and broadcast it. (d-e) Robot omni3 that tracks the ball, and
also computes it’s GMM and broadcast it. (f) The goalkeeper (omni1) tests received GMMs for
disagreement and computes GMM CI. (g) The final fused GMM is consistent.

39

5. Results

1 2

3

4

(a)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

(b)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

(c) (d)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

(e) (f)

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [

m
]

(g) (h)

Figure 5.9: GMM Data Fusion with Disagreement. (a) Top field camera view. (b) Robot omni4
tracks the ball and broadcasts its GMM, but is not well localized. (c-f) Robots omni2 and omni3
track the ball, compute their GMMs and broadcast it. (g-h) The goalkeeper (omni1) tests received
GMMs for disagreement and computes GMM CI only for those that are in agreement.

40

6
Conclusions and Future Work

Contents
6.1 Conclusions . 42
6.2 Future Work . 42

41

6. Conclusions and Future Work

6.1 Conclusions

We presented a cooperative sensor fusion model based on a particle filter perception frame-

work, for mobile robots operating in dynamic environments. It was designed to cope with the

RoboCup MSL environment and it was implemented in ISocRob omnidirectional robots. We aim

at taking advantage of a team of sensors to detect the ball on the field at all time.

For that we implemented a 3D shaped-based ball tracker that comprises a realistic dynamic

motion model. The system is based on particle filters and also comprises an observation model

that allow us to compute the likelihood of a ball hypothesis, given the ball shape model, the

projection model for the omnidirectional camera and an acquired image. To acquaint for the robot

motion in the tracker we apply the inverse dynamics of the robot to the particle filter. Experiments

show that we are able to track arbitrary color balls in 3D with a moving robot.

We also presented a framework for representing and measuring disagreement of sensor in-

formation based on Gaussian Mixture Models. This representation allows to capture arbitrary

complex uncertainty from nonlinear observation models, yet it’s parametrization is simple and

takes no overhead in communications. We implemented the Expectation Maximization algorithm

for GMM parameter estimation to approximate the sample based ball posterior distribution.

The implemented cooperative perception model takes advantage of the GMM representation

in two distinct forms. One is to improve the local ball particle filter in a distributed fashion way by

injecting new particles drawn directly from the received GMMs. The other is to compute a ball

team estimate directly from the received GMMs target distribution with Covariance Intersection.

6.2 Future Work

As for future work, we propose to:

• concluded the cooperative perception model implementation in ISocRob software architec-

ture;

• extend the ball tracker with a more complex motion model that models the ball being kicked

over the air;

• extend the ball tracker to work with simultaneous cameras with different setups, and imple-

ment it in the ISocRob robots using the omnidirectional camera and the front camera at the

same time;

• improve the ball tracker ego-motion compensation with gyrodometry to correct the drift error;

• dynamically compute which is the most suited number of Gaussian mixture components to

approximate a given distribution, using KD-trees like Ihler and Willsky [35];

42

6.2 Future Work

• use GMM Covariance Union in data fusion to prevent an excessive number of final compo-

nents after Covariance Intersection

43

6. Conclusions and Future Work

44

Bibliography

[1] H. Costelha, N. Ramos, J. Estilita, J. Santos, M. Tajana, J. Torres, T. Antunes, and P. Lima,

“Isocrob 2007 team description paper,” Instituto Superior Técnico, Tech. Rep., 2007.

[2] M. Taiana, “3d model-based tracking with one omnidirectional camera and particle,” Master’s

thesis, Laboratorio di Intelligenza Artificiale e Robotica, Politecnico di Milano, 2007.

[3] J. L. Azevedo, N. Lau, G. Corrente, A. Neves, M. B. Cunha, F. Santos, A. Pereira, L. Almeida,

L. S. Lopes, P. Pedreiras, J. Vieira, D. Martins, N. Figueiredo, J. Silva, N. Filipe, and I. Pin-

heiro, “Cambada2008: Team description paper,” University of Aveiro, Tech. Rep., 2008.

[4] O. Zweigle, U.-P. Kappeler, T. Ruhr, K. Haussermann, R. Lafrenz, F. Schreiber, A. Tamke,

H. Rajaie, A. Burla, M. Schanz, and P. Levi, “Cops stuttgart team description 2007,” University

of Stuttgart, Tech. Rep., 2007.

[5] T. Hafner, S. Lange, M. Lauer, , and M. Riedmiller, “Brainstormers tribots team description,”

University of Osnabruck, Tech. Rep., 2008.

[6] M. Lauer, S. Lange, and M. Riedmiller, “Modeling moving objects in a dynamically changing

robot application,” in KI 2005: Advances in Artificial Intelligence, 2005, pp. 291–303.

[7] H. F. Durrant-Whyte, “Sensor models and multisensor integration,” International Journal of

Robotics Research, vol. 7, no. 6, pp. 97–113, 1988.

[8] A. G. Mutambara, Decentralized estimation and control for multisensor systems. CRC

Press, 1998.

[9] M. Dietl, J.-S. Gutmann, and B. Nebel, “Cs freiburg: Global view by cooperative sensing,” in

International RoboCup Symposium, 2001.

[10] M. Dietl, J. S. Gutmann, and B. Nebel, “Cooperative sensing in dynamic environments,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.

[11] F. d’Agostino, A. Farinelli, G. Grisetti, and D. Iocchi, L. andNardi, “Monitoring and information

fusion for search and rescue operations in large-scale disasters,” in International Conference

on Information Fusion, 2002.

45

Bibliography

[12] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor collaboration for tracking

applications,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 61–72, 2002.

[13] T. Suzuki, N. Tomoyasu, M. Takafashi, and K. Yoshida, “Eigen keio univ. team description,”

Keio University, Tech. Rep., 2008.

[14] N. Lau, L. S. Lopes, and G. A. Corrente, “Cambada: Information sharing and team coordina-

tion,” in Robótica 2008, 2008.

[15] A. Ferrein, L. Hermanns, and G. Lakemeyer, “Comparing sensor fusion techniques for ball

position estimation,” in RoboCup 2005 Symposium, 2005.

[16] A. W. Stroupe, M. C. Martin, and T. Balch, “Merging probabilistic observations for mobile

distributed sensing,” Carnegie Mellon University, Tech. Rep., 2000.

[17] P. Pinheiro and P. Lima, “Bayesian sensor fusion for cooperative object localization and world

modeling,” in 8th Conference on Intelligent Autonomous Systems, 2004.

[18] A. Cai, T. Fakuda, and F. Arai, “Information sharing among multiple robots for cooperation in

cellular robotic system,” in Intelligent Robots and Systems, 1997.

[19] G. Steinbauer, M. Faschinger, G. Fraser, A. Muhlenfeld, S. Richter, G. Wober, and J. Wolf,

“Mostly harmless team description,” Graz University of Technology, Tech. Rep., 2003.

[20] A. Pahliani and P. Lima, “Cooperative opinion pool: a new method for sensor fusion by a

robot team,” in Intelligent Robots and Systems, 2007.

[21] G. G. Matt Rosencrantz and S. Thrun, “Decentralized sensor fusion with distributed particle

filters,” in Conference on Uncertatinty in AI (UAI), 2003.

[22] B. Upcroft, L. Ong, S. Kumar, M. Ridley, T. Bailey, S. Sukkarieh, and H. Durrant-Whyte, “Rich

probabilistic representation for bearing only decentralized data fusion,” in 7th International

Conference on Information Fusion, 2005.

[23] J. Messias, J. Santos, J. Estilita, and P. Lima, “Monte carlo localization based on gyrodometry

and line-detection,” in Robótica 2008, 2008.

[24] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” in

IEEE International Conference on Robotics and Automation (ICRA99), 1999.

[25] P. Heinemann, J. Haase, and A. Zell, “A combined monte-carlo localization and tracking

algorithm for robocup,” in International Conference on Intelligent Robots and Systems, 2006.

[26] S. Thrun, W. Bugard, and D. Fox, Probabilistic Robotics. The MIT Press, 2005.

46

Bibliography

[27] M. Taiana, J. Santos, J. Gaspar, J. Nascimento, A. Bernardino, and P. Lima, “Color 3d model-

based tracking with arbitrary projection model,” in SIMPAR Omnidirectional Vision Workshop,

2008.

[28] A. Bhattacharyya, “On a measure of divergence between two statistical populations defined

by their probability distributions,” in Bulletin Calcutta Mathematical Society, 1943.

[29] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer,

2003, pp. 165–190, 236–242.

[30] J. A. Bilmes, “A gentle tutorial of the em algorithm and its application to parameter estimation

for gaussian mixture and hidden markov models,” U.C. Berkeley, Tech. Rep., 1998.

[31] K. V. Mardia, Multivariate Analysis. Academic Press, 1979, pp. 96–97.

[32] S. Julier and J. Uhlmann, “A non-divergent estimation algorithm in the presence of unknown

correlations,” in American Control Conference, 1997.

[33] S. Kullback, Information Theory and Statistics. Dover Books, 1968.

[34] H. Beiji, S. Maes, and J. Sorensen, “A distance measure between collections of distributions

and its application to speaker recognition,” in International Conference on Acoustics, Speech

and Signal Processing, vol. 2, 1998, pp. 753–756.

[35] A. T. Ihler, J. W. F. III, and A. S. Willsky, “Particle filtering under communications constraints,”

in Proceedings, IEEE Statistical Signal Processing (SSP), 2005.

47

Bibliography

48

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables

	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Main contributions
	1.4 Dissertation outline

	2 Background and Related Work
	2.1 3D Visual Tracking
	2.2 Distributed Sensor Networks
	2.3 Data Fusion Techniques

	3 Probabilistic World Perception
	3.1 Self-Localization
	3.2 Ball Detection and Tracking
	3.2.1 3D Projection Model
	3.2.2 Observation and Motion

	4 Cooperative Perception in Mobile Sensor Networks
	4.1 Information Representation
	4.2 Mobile Cooperative Sensor Model
	4.2.1 Local Filter
	4.2.2 Team Filter
	4.2.3 Improving Self-Localization

	5 Results
	5.1 Experimental setup
	5.2 Ball Tracking
	5.2.1 Arbitrary Color Ball Tracking with a Moving Robot

	5.3 Cooperative Perception
	5.3.1 Generating Compact Information Representations
	5.3.2 Fusing Data with Agreement
	5.3.3 Fusing Data with Disagreement

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

