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Abstract—This article presents a cooperative approach for
tracking a moving object by a team of mobile robots equipped
with sensors, in a highly dynamic environment. The tracker’s
core is a particle filter, modified to handle, within a single unified
framework, the problem of complete or partial occlusion for some
of the involved mobile sensors, as well as inconsistent estimates in
the global frame among sensors, due to observation errors and/or
self-localization uncertainty. We present results supporting our
approach by applying it to a team of real soccer robots tracking
a soccer ball.

I. INTRODUCTION AND RELATED WORK

This paper deals with cooperative tracking of an object
by a team of robots. Object tracking is a field of research
with multiple techniques being researched and developed
extensively [1]. In recent years RoboCup Soccer has laid down
a common platform for various research areas in robotics,
object tracking being a predominant and crucial one. This
involves tracking the soccer ball by the robots during the game
play. The complexity of tracking has risen from small, orange
colored balls to standard sized, random/multi-colored balls and
from 2D to 3D [2]. The problem can be formulated as tracking
a moving object of known dimensions by a moving robot. We
use RoboCup Soccer as an ideal testbed for novel methods
that can be used outside soccer.

Particle Filters (PF) are one of the most popular methods
employed for tracking [7]. PF is a non-parametric filter. Non-
parametric filters can efficiently handle multi-modal beliefs.
In a generic tracker, the motion model of object being tracked
can be completely unknown and might change over time hence
using a parametric filter can lead to failures quite often. This
is because if we use any standard motion model for the
object, the tracker can quickly result in low confidence on the
posterior when the object motion changes to a different model
or switches randomly. This makes it essential to have beliefs
with multiple modes scattered over the whole state space
which makes the use of a non-parametric filter appropriate. In
the RoboCup scenario, PF based trackers are dominant tools
currently being used by most of the teams. An interesting
approach of fusing the Extended Kalman Filter (EKF) and
Monte Carlo PF has been described in [4] where an integrated
self-localization and ball tracking method is presented. In
[5] a method for simultaneously estimating ball position and
velocity using Monte Carlo Localization (MCL) is developed.
An efficient implementation of Rao-Blackwellised PF which
was successfully demonstrated on Sony AIBO robots in the
four-legged league of RoboCup is presented in [7]. None
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of these works use the information from more than one
sensor/robot, therefore being less robust to occlusion and very
dependent on the relative state of the robot and the object
tracked.

The field of sensor fusion, including its use for single and
multiple target tracking [12,13], is now very mature. However,
it does frequently address situations where the sensors are
static, know their location in a global frame with no uncer-
tainty, and occlusions occur rarely. When sensors are mobile,
e.g., mounted on the top of mobile robots, their knowledge of
their own localization may degrade over time and/or during
time periods due to a number of reasons (e.g., absence of
known environment features, bad odometry) and this impacts
the uncertainty in the determination of the target position
in the global frame, where it is fused with the estimates
from the other sensors. Furthermore, occlusions can occur
more frequently, as they are due not only to the target(s)
path but also to the motion of the different sensors/robots.
Therefore, the problem of cooperatively tracking a moving
object by a team of mobile sensors is an extension of sensor
fusion, designated here as cooperative perception, in which one
has to handle occlusions, disagreements between sensors, and
dynamic changes of the observation models due to frequent
spatial changes.

Efficient solutions for multiple static platforms and a mov-
ing target [14] or a single moving platform and moving
target(s) [15] have been introduced. Our approach to combine
both challenges, i.e., track a moving target using multiple
moving platforms, is novel.

In [10] relationship between fixed world objects and moving
objects is explored for global object localization. These rela-
tionships are communicated to teammates where they form
a set of constrained relations, solving which gives object
location estimates. The authors in [6] present a cooperative
PF based tracker for Sony AIBO robots, where the fusion of
information involves communicating a reduced set of particles
between the robots over the wireless network, which still re-
mains a huge data set causing inefficient communication. Our
approach overcomes this problem which is explained further
in this paper. Outside the RoboCup scenario, in [11] a new
cooperative perception architecture is developed and tested on
multiple UAVs for forest fire detection and localization. A
substantial effort is put on developing the fire detector and
fusion of data from various sensors used on-board a single
and multiple UAVs. The errors that creep in due to the self-
localization of the UAVs themselves are unaccounted for,
which we address in our work.

In [12,13] a decentralized PF for multiple target tracking is
developed and deployed on flight vehicles. The communication
bandwidth problem is solved by transforming the particle



set into a Gaussian Mixture Model (GMM) which seems to
be an efficient way. In our work we communicate a single
parametrized observation probability density function between
two robots. This not only further reduces the bandwidth usage
but also prevents the prediction model errors of the PF to
be propagated to team-mates which happens when sharing of
particles (or of a parametrized form of it) is done.

Our work builds mainly upon [2] and [3], carried out in
the direction of object tracking and sensor fusion among
teammates respectively. In [2], a PF based tracker is presented
with a unique and novel 3-D observation model based on
color histogram matching. Each robot has an individual tracker
and its most notable feature is that the tracking could be
performed in 3-D space without the object color information,
but at the cost of computational expense. In [3] a sensor fusion
technique for cooperative object localization using particle
filters is presented. Parameters of a GMM approximating a
teammate’s tracker’s particles are communicated to the other
robots. Particles at a robot’s tracker are then sampled using
own belief and the received GMM.

In this paper we introduce an approach to cooperative
perception where we implement a PF-based tracker. For each
observing robot (i.e., a mobile robot with a sensor), we
determine confidence factors associated to the tracked target
from two origins: i) the confidence on the observation itself
and ii) the confidence on the self-localization estimate of
the observing robot. Note that the self-localization method
itself is completely decoupled from the PF-based tracker. The
observation model of each mobile sensor is a parametrized
probability density function (e.g., a Gaussian centered on the
observation). The probability density functions associated to
the observations of the team robots are shared by all of them
in a pool. Each robot selects the best function, i.e., the one
with higher confidence factors, from the pool, and uses it to
assign weights to the particles in the traditional PF update
step. The parametrization of the observation models intends
to reduce significantly the amount of data communicated to
teammates, since the probability density function can be univo-
cally represented by its communicated parameters. The method
handles, within a single unified framework, inconsistencies
(disagreements) between sensors due to observation errors
and/or self-localization uncertainty. In order to achieve near
real-time tracking, we track the object in 2-D space only and
use the object color information. These will be relaxed in the
future work, as they depend mostly on the available computing
power.

II. PARTICLE FILTER BASED TRACKER

In this section we briefly explain a standard PF and how
it is used to construct a tracker. Our tracker will estimate
the 2-D pose of an object assumed to be moving on a
known ground plane. The state vector of the object will be
denoted by x;. We assume that the object’s state evolution over
time is an unobserved Markov process with a uniform initial
distribution p(xg) and a transition distribution p(x;|x;—1). The
observations {y,;¢ € N} are conditionally independent given
the process {x;;¢ € N} with distribution p(y,|x;).

For the estimation of the a posteriori distribution i.e. belief
of the state given all observations p(X;|y;.,), the problem under
Markov assumption is formulated as:
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In the rest of paper we refer to p(x¢|x¢—1) as the motion
model and to p(y,|x;) as the observation model. u; is the
odometry input to the motion model.

For solving the problem as formulated above we use a PF-
based tracker. A PF is a non-parametric Bayesian filter where,
contrary to a parametric Bayesian filter, the state’s probability
distribution is represented by a set of M weighted particles
X; = {xi,wi}M, where each particle is an instantiation of
the state itself [8].

ITII. THE COOPERATIVE TRACKER

In this section we present our PF-based cooperative tracker
algorithm (see Algorithm 1) which involves the classical PF
augmented with the fusion step which we introduce as a novel
contribution.

Algorithm 1 PF_Cooperative_Tracker(X;_1,us, M, k, N)

X;=X;=¢
for m =1 to M do

x,[fm] = sample_motion_model(u;, xyf]l)
end for
{The Fusion step starts here}
Perform sensor observation and generate Observation Model
Mklocal
Mbiiocat = Miworia {Frame Transformation using self
posture. In rest of the algorithm the Observation models’
parameters are in world frame and are denoted by My }
Compute and Send My, C(My),Crocy, to teammates.
ag = C(M},) {Observation confidence for robot k}
for r=1to N do

if r # k then

receive M,.,C(M,),Croc, from R,
ar =C(M,) *Croc,

end if
end for
for r=1to N do

o, = =x*— {Weight normalization step}
end for e
for m =1 to M do

i=r; r €[l: N] sampled with probability «,

wt[m] ~ Mi
X, =X, + (a?gm],wgmb
end for

{The Fusion step ends here}
X; = Low_Variance_Sampler(X;)
return Xy

The prediction step and the resampling step of the PF based
cooperative tracker inherit directly from the original PF [8].
We introduce a fusion step which modifies the observation



model’s mechanism which in turn modifies the way in which
the particles are assigned weights.

The first input to the algorithm, X;_; is the set of particles,
which initially could be distributed on the state space accord-
ing to any choice. Here we consider a uniform distribution. u,
denotes the input to the motion model of the tracked object. M
is the total number of particles which depends on the available
computational resource. The larger the value of M, the better
is the approximation of the target probability density function
(PDF). A standard practice is to keep M close to the order of
500 — 1000. k is the robot number on which the algorithm is
running in a team of N robots. We denote the r*" robot as
R,.

First, we assume that each robot can communicate with
every other robot in the team. After the prediction step of PF
the robot makes an observation and generates an observation
PDF, denoted by M, approximating the observation over
the whole state space. This PDF could be any parametrized
function in general based on the model chosen. M, is the
observation model PDF by robot %k, which can be reduced
to the parameters of the PDF representing the observation
model, e.g., mean and covariance matrix for the Gaussian case.
C(My,) represents the robot k’s confidence on its observation
which can be calculated in various ways depending on the
implementation and scenario. We calculate C(My,) as :
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where A, is the area of the tracked object observed in the
camera image and A, is the expected area of the object since
we know a priori the real dimensions of the tracked object.

Croc}, represents the robot k’s confidence on its own local-
ization. The self-localization confidence factor is determined
from the particle filter set. One good approach to do this is to
consider the number of effective particles n’gf 5 (8]
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which assumes normalized weights of the particles.
The observation PDF’s parameters are converted into the
world frame at this point, using the robot’s self-localization
estimate. Next, we receive M,.,C(M,),Croc, from every
other robot r in the team. It is important to note here that these
parameters obtained from the teammate robots are already
expressed in the world frame. This leads us to form a set
P, = {M, | 1 < r < N} which we call an observation
model pool (OMP) for the robot £ in the world frame whose

elements represent each robot’s individual observation PDF.

We now associate a weight to each element in Pj as
mentioned in Algorithm 1. For the robot k’s OMP, only the
elements due to other teammates are weighed using their
self-localization confidence except the element due to k’s
own observation which is weighed only by its observation

confidence. The reason for this will become clear later.

o = C(My) 4

ar =C(M;)*Croc, 1<r<N;r#k 5)

Furthermore, we normalize the weights to :
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The most crucial step of fusion is here. For every particle
that we have after the prediction step we do the following :

Step 1 : Sample an element M, from the OMP Pj with
probability «;. Recall that M; is the parametrized observation
PDF generated by robot ¢’s observation of the target.

Step 2 : Calculate the weight of the particle using the PDF
represented by M; sampled in the previous step. For instance
if M, is parametrized as a Gaussian over the target space, the
closer the particle lies to the mean of this Gaussian, the higher
is its weight. These two steps are further clarified in Fig. |
with the help of an example OMP.

I1<r<N ©)

Ay =

Weight

Observation Model Pool (OMP) at a robot k

Fig. 1. For an m®" particle m,[fm] at time step ¢, M3 is sampled with a

probability a3 from the OMP which consists of the observation model PDFs
M -+ My which in this figure are shown as Gaussians for the sake of an
example (but in practice it can be any parametrized PDF). M3 is then used to
generate the weight w;"" of the particle z;""'. Sampling M and then using
it for generating the particle’s weight is done for every particle at each time
step.

Since the above two steps are performed for every particle
at a given iteration of the Algorithm 1, it fuses the information
from all the elements of the OMP according to their respective
importance. After this, resampling is performed which can
be done by any established method. The association of OMP
elements to particles is done in every iteration of the PF-based
tracker. Due to the sampling process in step 1 as mentioned
above a few particles get associated with low weight elements
of OMP to maintain the spread of the particles.

The most relevant problem which this PF-based cooperative
tracker solves is that of partial or complete occlusion. A
partially occluded object’s observation by a robot k£ may
lead to a low confidence in its own observation PDF, but
in case the same object is being fully observed by another
teammate robot 7, it will lead to a high confidence in the
element contributed by it to Py, and hence a greater chunk
of particles will get associated to it. This way the robot k
would still be able to make a good approximation of the
target distribution. The OMP elements refer to the world
frame. If a robot is wrongly localized, its observation of the
object in the world frame will be incoherent with another
correctly localized robot’s observation of the same object in
the world frame, although both might be observing the object
correctly in their respective local frames. The incoherency here
is due to the frame transformation carried out by the wrongly



localized robot, of its observation in local frame to the global
frame. In our approach this problem is solved by weighing
the OMP elements by the associated robot’s self localization
confidence multiplied by its observation confidence. Also, this
is done differently for the recipient robot and the sender robots
(4),(5). By doing this we ensure 2 major advantages: i) a
wrongly localized robot’s good observation hardly influences
other robot’s OMP; ii) a wrongly localized robot would still
have a high confidence in its own good observation which
is necessary if we want to carry out visual tracking in its
local frame. It will not be affected by the observations of well
localized teammates which are incoherent with the wrongly
localized robot’s local frame. This enables the robot to keep
tracking the object with its local information during visual
tracking without relying on incorrect global frame information.

We do not have to deal with the robot’s motion directly. This
is taken care in situ when we construct the OMP in world
frame, using the self-posture of the robot which inherently
involves odometry or motion update of the robot, assuming
that the robot’s acceleration is not very high. Otherwise the
frame transformation functions should include the non-inertial
terms.

Robot motion control is handled assuming that the robot’s
acceleration is not very high. Otherwise the frame transforma-
tion functions should include the non-inertial terms.

IV. IMPLEMENTATION AND RESULTS
A. Test Bed

We applied the proposed algorithm here to the robot
soccer scenario. Our testbed is the RoboCup Middle Sized
League(MSL) robot team. In robot soccer, one of the basic
necessities is to continuously track the ball. A major concern
here is that the robots tend to lose their localization on the
soccer field because of low-range vision and field symmetry.
Moreover, since the field is too large as compared to a robot’s
camera vision field, a ball far from the robot (> 5m) is
scarcely visible, and very often a nearby lying ball is occluded
by a teammate or an opponent robot. Thus it becomes a very
interesting and appropriate testbed for our proposed algorithm.
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Omni directional robots of MSL on the soccer field
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Fig. 2.

Each of our 5 fully autonomous robots (Fig. 2) in the team
is characterized by an omni directional drive and a dioptric
vision system consisting of a fish-eye lens facing downwards.
All high level algorithms are coded using C/C++ programming
language and run on a Pentium IV 1.6 Ghz CPU laptop always
mounted on the robot itself. All implementations and results
presented further involve tracking the ball by 4 of these robots
in one half of the MSL field.

B. Implementation

In our implementation, we model individual robot’s obser-
vation of the ball as a bivariate Gaussian distribution over the
soccer field. The confidence of the observation is calculated
based on the observed ball size and expected ball size as
mentioned in (2). This is because in the image frame the
expected ball size is a fixed function of the distance of ball
(fixed radius = 10cm) from the image center. Images from
the camera are streamed at 15 fps.

For the prediction step of the tracker we use the same
approach (7) as in [2]

xa=[g G x [ G e o

which is a constant velocity model with normally distributed
acceleration noise about zero mean. I is a 3 x 3 identity matrix,
At = 1, and a; is a 3 x 1 white zero mean random vector
corresponding to an acceleration disturbance. For resampling
we apply the Low Variance Sampling method [8].

C. Robot Localization

Since the PF based tracker is closely interlaced with the
localization uncertainties of individual robots, it is worth
mentioning that the localization method implemented here
is Monte Carlo Localization, and is independent of the ball
tracking particle filter.

D. Results

In this sub-section we present a set of plots for each
experiment we made using 4 robots represented as R; — Ry4. In
Figs. 3 and 5 robot’s self localization confidence and individual
robot’s ball observation confidence is shown. The plots in Figs.
4 and 6 represent the spatial variance and the variance of
weights of the particles at every iteration step for the tracker
running on Rj3 in each experiment which are calculated as in
(8) and (9). Every iteration of the PF-based tracker consisting
of the prediction step and the observation-fusion-update step
takes ~ 0.1 second. Note that comparing with the ground truth
is rather difficult in scenarios like this because an overhead
field camera will have tracking errors in itself.

LM
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Uweight = M g(wt ) - M z::l(wt ) . (9)

In the accompanying video [http://www.youtube.
com/watch?v=m_a4DuWagYTI], the left side of the frame
shows the self localization estimates of all robots and R3’s
estimate of the tracked ball’s global position. The right side
of the frame shows the simultaneously shot overhead footage
of the experiment in which R3 can be seen reaching for the
ball.
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Fig. 3. Confidence plots of experiment 1 (Each iteration is performed every
0.1 second)

1) Experiment 1: In this experiment we have 3 robots
which are forced to stay at their initial positions on the field
and Rj is supposed to reach for the ball. Tracking by R3 has
been analyzed in the plots of Fig. 4.

Confidence plots for R3 in Fig. 3 show that intermittently
between iterations 100 and 400 the ball was not directly ob-
served by it. During this period, the ball was directly observed
by either Ry, Rs or Ry (see other plots in Fig. 3). As a result of
fusion of the observation models from teammates as explained
previously in this paper, the cooperative tracker on R3 was able
to track the ball consistently during this period with only a few
breaks where it momentarily lost the ball. This is supported by
the low spatial variance of the R3’s tracker particles and their
converged weight variance in Fig. 4 with few small periods
of peaks in variances denoting instances when the ball was
completely lost. Also, the robot kept following the correct ball
visible in the video accompanying this paper.

The spatial variance of the particles in R3’s tracker reach
a high peak for a small duration after iteration 300 in Fig.
4 which indicates that the ball was not tracked during that
period. This was not only because the ball was lost from Ra,
Rs and R4’s vision field but also only R2; was observing the
ball with a low observation confidence (~ 0.4). During most
part of this experiment all four robots stay well localized.
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Fig. 4. Spatial Variance and Variance of the weights of the Particles of the
cooperative tracker at R3 in experiment 1

2) Experiment 2: Similar to experiment 1, in this setup too
there are 3 static robots (R1, R2, R4) and one dynamic robot
(R3). The major difference here is that R;, Ro and R3 do not
localize well for most of the time.

The first visible conclusion from the confidence plots in
Fig. 5 is that the robot R3 directly observes the ball for
a very short period (iterations ~ 300 — 350, near 450 and
near 700). Up to iteration 300, the spatial variance of Rj3’s
tracker’s particles remain low and their weight variance has
also converged indicating that R3 was able to track the
ball, which is supported by the accompanying video. This is
because R4 (see Fig. 5) was directly observing the ball and
since it was well localized, R3 was relying on its observation
model and hence tracking the ball in the correct position.

Close to iteration 300 the ball is lost by all the robots for a
very short instance (peak in spatial variance in Fig. 6) and then
R3; and R, observe the ball alternatively between iterations
(~ 300 & 420) (Fig. 5) leading to a converged spatial variance
during that time supported by the video showing that R3 is
consistently following the ball.

During iterations (~ 420 — 650) the ball is seen directly
only by R; (Fig. 5) which has an almost zero confidence on
its self localization estimate (Fig. 5). The cooperative tracker
at R3 takes this into account and prevents itself from tracking
the ball in a wrong position, hence the high spatial variance
in Fig. 6 during that time period.

Another notable instance is at iteration 400 where R4 was
directly observing the ball and was well localized (Fig. 5), R;
and R3 were not seeing the ball and Ry was observing the
ball but was not localized (low self-localization confidence
in Fig. 5). At that instance, 3 was following the correct
ball (supported by low spatial variance in Fig. 6 and the
video) indicating that the fusion in Rj3’s cooperative tracker
diminished the influence of Rs’s observation model because
of its low self localization confidence hence protecting itself
from tracking the ball in a wrong position.

V. CONCLUSION AND FUTURE WORK

After performing a considerable number of tests on real
robots we conclude that our algorithm provides a robust
approach for tracking an object cooperatively by a team of
robots and support this on a set of real robot experimental
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Fig. 5. Confidence plot of experiment 2 (Each iteration is performed every
0.1 second)

data. However, a few major points can be enumerated: the
approach is a solution for tracking an object which is likely to
be occluded or partially occluded quite often. If the object
is confidently located by a wrongly localized robot, after
fusion it would track it correctly in its own local frame
and affect other teammates’ fused observation model quite
insignificantly. By sharing an observation PDF (in which
only the models’ parameters are enough to construct the
whole PDF), we significantly reduce the use of bandwidth
and communication time which leads to real-time tracking of
the object. We are working further to extend our model of
cooperative tracking to include multiple sensors on the same
robot as well as to relax the 2-D space and colored object
tracking assumptions. Tracking a random colored ball in 3-D
space will require a new observation model and an extension
in the state space without any changes in our current tracker’s
algorithm because it uses a generalized observation model and
is independent of the state space dimensions. Furthermore we
intend to extend our current approach to active cooperative
tracking where we dynamically change the geometry of the
robot formation so as to reduce the uncertainty of the belief
in the object recognition.

Fig. 6.
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