
Experiments with navigation based on the RSS of wireless
communication

Luis Oliveira, Hongbin Li, Luis Almeida

Abstract— This paper addresses the general field of mobile
robots navigation within fixed sensor networks. We focus on
indoor and anchor-less navigation methods based only on
RF communications and the respective RSSI (Received Signal
Strength Indicator). We implement two distance-based methods,
namely a simple oblivious method – based on random directions
– and a more complex and demanding iterative method –
based on a Maximum Likelihood Estimator. These methods are
then evaluated with practical experiments. In particular, in this
work we made a small autonomous robot move back and forth
between two RF beacons, using RSSI information collected from
low-power radios with omni-directional antennas. The results
show the superiority of the iterative method concerning the
speed of reaching the target, at the cost of extra computations,
confirming the viability of RSSI-based navigation.

Index Terms— Robot Navigation, wireless communication,
RSSI

I. INTRODUCTION

Mobile robots with specific sensors, actuators or other
instrumentation, can provide a valuable help in covering
larger areas or large objects, complementing the information
that can be obtained with networks of fixed sensors. This
is typically the case in application domains such as surveil-
lance [1] and exploration [2]. The benefits can be further
extended having several mobile robots cooperating among
themselves [3]. In these cases, the robots have to navigate
and there are typical aids that are used for that purpose, from
landmarks, to GPS (Global Positioning System). However,
landmarks are frequently undesired either because they can-
not be deployed or they interferece with the environment,
or are not resistant and fade out or can even be removed
maliciously. Similarly, GPS has reception problems in in-
door environments.

Therefore, in such situations, relative localization and
navigation becomes more attractive. For example, the team of
robots can assume a formation that is more convenient to pro-
vide longer reach or wider area coverage while maintaining
connectivity, just by knowing how they are positioned with
respect to each other. In another case, one can take advantage
of the pre-installation of wireless beacons, that can be nodes
of a wireless sensor network for example, and make robots
navigate through a specific sequence of beacons in order

Hongbin Li is with the State Key Laboratory of Industrial Con-
trol Technology, Zhejiang University, Hangzhou 310027, China. Email:
hbli@iipc.zju.edu.cn

Luis Almeida is with IEETA / DEEC-FEUP, Univ Porto, Porto, PORTU-
GAL. Email: lda@fe.up.pt

Luis Oliveira is with DETI, University of Aveiro, 3810-193 Aveiro,
Portugal. Email: loliveira@ua.pt

This work was partially supported by the Portuguese Government through
FCT grant PTDC/EEA-CRO/100692/2008 (PCMMC project)

to visit certain points in space and perform an approximate
desired trajectory.

In this paper, we specifically address this latter case using
RF (Radio Frequency) beacons and we will focus on the
navigation towards each beacon using the respective RSSI
(Received Signal Strength Indicator) as an estimation of
relative distance, despite the coarse relationship between
both. This has been successfully achieved in previous work
such as [4] and [5] to provide relative localization in a team
of robots. The work in this paper is a continuation of that
reported in [6] and [7] particularly with an extension of
the practical experiments. We will use one robot and two
beacons, and we will compare two methods to make the
robot go back and forth between the two beacons, without
any pre-planned path information and using solely the robot
relative displacements and the RSSIs of the received beacons.

II. BACKGROUND

A. RSSI field

It is known that the intensity of the electromagnetic signal
of the wireless communication attenuates as it travels in
open air. The exact expression that relates such attenuation
with distance is rather complex and depends on several
environmental parameters. Moreover, it is only valid in the
absense of obstacles, either because of the extra attenuation
they cause but also because of the signal reflexions that lead
to multi-path interference. Nevertheless, as long as there is
a line of sight between sender and receiver, they are away
from large metalic parts and adequate filtering is used, the
behavior of the resulting RSSI with distance is relatively
well-behaved with a good gradient [7]. This allows using
gradient-based navigation methods as well as other methods
based on beacon localization.

For simplicity, in this work we use beacon localization
methods, only, which are relative, anchor-less and thus easy
to deploy. There are a variety of such methods, for example
based on angular detection and distance estimation. The
former require directional antennas to detect the heading of
the beacon with respect to the robot. These antennas are more
expensive and not always available. The latter use simple,
common omni-directional antennas and use an estimation of
the distance between the robot and the beacon. In both cases,
the robot has to move between different points in space and
analyze the variation in angle or distance to the beacon. The
methods used in the work are based on distance estimation,
only, for which the robots use the RSSI of each received
beacon message, which are transmitted periodically.

B. Navigation Using an oblivious method

This is a rather simple method that compares the current
RSSI reading with the previous one to decide on the direction
to head to. This method has been used in both [6] and [7] and
it has the main advantage that it can be applied to very simple
robots. The decisions are merely based on three premises:
the robot approached the beacon; moved away from it; or
the variation was not significative. In the former case, the
heading is kept, in the second case, the heading is reverted
180 and in the latter case a random heading is chosen.

C. Navigation Using MLE

The MLE (Maximum Likelihood Estimation) method is
a more complex approach that estimates the most likely
position of the beacon based on the RSSI readings obtained
in several different points. This method is iterative and, as
such, it requires a larger capacity in both memory and pro-
cessing. Moreover, the relative position of the points where
the RSSI readings are taken is also necessary and thus a more
sophisticated robot with encoders to measure movement is
required. This method has been used in [7] both theoretically,
in a Matlab simulation, and experimentally, using a moving
platform. The same work also shows that, by tuning some
parameters, this method is feasible in either noiseless or
noisy environments with a faster or slower convergence to
the beacon. The algorithm needs a certain number of initial
sample points (Nten) to provide an estimation of the beacon
position. The higher this parameter the more time it takes for
the algorithm to actually start working. After such number of
samples, the algorithm continues saving samples in a circular
buffer with a certain depth (Nqueue) while producing a new
estimate with the samples in the buffer everytime a new
sample is received. In this case, the deeper the buffer, the
more accurate is the estimation.

III. IMPLEMENTING THE NAVIGATION STRATEGY

This implementation has three important elements which
will be described below – the beacons, the robot and the
computer.

A. The beacons

To begin with, crossbow’s MicaZ motes were used, Fig-
ure 1. As [7] suggests, the beacons used are actually a
set of 3 nodes separated by 5cm. This is done to reduce
the impact of RSSI noise. These nodes, which have one
antenna each, are properly synchronized and their purpose is
to emulate a single node with three antennas. The beacons
are set up in the following way: each beacon has a master
node, whose functions are trigger the beacon transmission
and synchronize with other master nodes to avoid collisions;
additionally each beacon has two slave nodes, these nodes,
upon receiving the message from their master, transmit after
a small amount of time. The synchronization is made using
an Adaptive-TDMA method based on [8]. The transmission
period is set to 500ms and the message sent by the nodes
contains the extended connectivity matrix, an aging vector,
and the requested and performed moves.

MicaZ

TinyOS

with nesC

IEEE802.15.4

 Spread information

Figure 28 – The MicaZ beacons setup

Fig. 1. The MicaZ beacons setup

When the other motes receive this beacon, and the LQI is
above a given threshold (in our case 100), they update their
RSSI table accordingly and save the information the CC2420
chip provides about the transmission (Link Quality Indicator
and Received Signal Strength Indicator) for future input of
their own information in the table. If, on the other hand, the
LQI is too low the message is drop. According to CC2420
datasheet, RSSI is made available in a register with a value
between -60 and 40, corresponding to an RSSI between -
100dBm and 0dBm, so, in order to make it positive, for a
simpler transmission, an offset of 60 is added. This is shown
in Figure 2. Also periodically, the values on the RSSI table
are first cleaned up (if too old), and new values (previously
saved) are included in the table.

B. The robot

To begin with, since these experiments include a moving
robot controlled by a MicaZ mote the above explanation is
still valid, see Figure 3.

Adding to that the mote also has the task of putting the
robot in motion. This task has been simplified by making the
moves very simple: rotate and move forward, Figure 4. But
navigation still has a problem: the existence of obstacles in
the way of the robot. To cope with this nuisance, obstacle
sensors were embedded in the robot and were used in a very
simple manner. If rotating, the robot continues to rotate until
the way is clear; if moving forwards the robot will stop.

C. The Computer

The computer setup is as shown in Figure 5. As it can be
seen it receives data from a node, which triggers a sequence
of operations. These operations are filter the RSSI data,
control the progress of the robot, and generate new moves.
The program runs in Matlab and calls Java methods.

1) RSSI data Processing: Note that up to this point the
emulation of a three antenna node is not concluded since
the received information is still from 7 different nodes. So,
in order to finalize this emulation, the mean of the several
non-zero RSSI values corresponding to the nodes in a given
beacon is calculated. Finally, to conclude the RSSI data
acquisition each time this program receives the extended
connectivity matrix, from the MIB600 board via TCP/IP, it
writes it on a sampling table, which holds the information
of three previous matrices (sampling window). Then, this
information is used to calculate a mean for each non-zero
element in the table, creating the RSSI sample, see [4].

TDMA:
1 if(source is the master of this group)
2 set send time;
3 else
4 if(source is another master and i am a master)
5 resync;
6 endif
4 RSSI=0;
5 endif
6 LQI=receivedLQI;

Get RSSI table:
1 if(piggyback has RSSI table)
2 get data from message;
3 for i=other nodes
4 if(received table age[i] is newer)
5 replace local table[i];
6 replace local age[i];
7 endif
8 endfor
9 endif

Get requested moves:
1 if(piggyback has requested moves)
2 if(received requested move[i].step is newer)
3 get requested move[i];
4 if(is for me) start moving;
5 endif
6 endif

Get performed moves:
1 if(piggyback has performed moves)
2 if(received performed move[i].step is newer)
3 get performed move[i];
4 endif
5 endif

Check and set send moves status:
1 if(performed moves steps > = requested moves steps)
2 send only performed move;
3 else
4 send only requested move;
5 endif

Send data to computer:
1 if(connected to computer)
2 send data to computer;
3 endif

Fig. 2. New message processing by MicaZ

Left

Motor

Right

Motor

L293E

LS7366 LS7366

Left

Sensor

MDA300C

Front

Sensor

Right

Sensor

MicaZ

TinyOS

with nesC

SPI
I2C

IEEE802.15.4

 Spread information

 Perform requested moves

Figure 29 – The robot setup

Fig. 3. The robot setup

Move Robot:
1 if(robotState is IDLE)
2 robotState = ROTATING;
3 reset counters;
4 rotate;
5 else
6 if(robotState is ROTATING)
7 go forward;
8 else
9 robotState = IDLE;
10 endif
11 endif

Fig. 4. Robot’s moving algorithm

2) Movement Planning: In addition to the current RSSI,
the information about the performed moves also arrives to
the computer. This information is saved and used to perform
a set of operations.

First, since this means the requested move is done, the
information on the new position and angle is computed and
saved (note that this information is only important in the
MLE method as the oblivious does not need to know the
position or angle). Then, the current RSSI data is saved and
associated with the current position. Once this is done, it
is finally time to perform the new move. This will be done
in different manners, depending on the method in use, as
described further on.

3) Movement with the oblivious method: In the beginning
of the run, the robot goes to a random direction. If the
difference between the RSSI reading in this location and
the reading in the previous location proves to be positively

TCP/IP
MIB600

MicaZ

TinyOS

with nesC

IEEE802.15.4

TCP/IP Computer

Matlab

Java Visualization

 Spread information

 Send information to computer

 Filter RSSI data

 Generate new moves

 Decide when to change target/stop

Fi ure 30 – The com uter setu

Fig. 5. The computer setup

1 if (abs(RSSI-RSSI old)<RSSI THRESHOLD)
2 Random Move;
3 else
4 if(RSSI-RSSI old>0.0)
5 Keep Going;
6 else
7 Turn Around;
8 endif
9 endif
10 RSSI old= RSSI;
11 while(angle>180.0)
12 angle-=360.0;
13 endwhile
14 while(angle<-180.0)
15 angle+=360.0;
16 endwhile
17 send move request();

Fig. 6. generateMove Method With Oblivious

1 if(Nsamples<=Nten)
2 random move();
3 else
4 positions=getPositions(Nsamples);
5 distances=getDistances(Nsamples);
6 Beacon = MLE(Nsamples,positions, distances);
7 angle = atan2(y Beacon-y RobotPosition,x Beacon-
x RobotPosition);
8 angle = angle-currentDirection;
9 while(angle>180.0)
10 angle-=360.0;
11 endwhile
12 while(angle<-180.0)
13 angle+=360.0;
14 endwhile
15 endif
16 send move request();

Fig. 7. generateMove Method With MLE

greater than a set threshold, then the robot proceeds in the
same direction, since it means the robot is approaching the
beacon. If, on the other hand, the value is negatively greater
than the threshold, the robot turns around, since the beacon is
further. Finally, if the threshold is not met, the robot rotates
randomly and proceeds. Once the computer decides what to
do, it sends the information to the robot, which will perform
the move. This is shown in Figure 6.

4) Movement with the MLE method: To begin with, the
MLE method, Figure 7, needs some information to start
the iterations, which will, eventually, lead to the objective.
This is done by making a small number of random tentative
moves, in order to acquire data to feed to the algorithm. After
this initial set of data is available, the iterations start, and the
robot starts to effectively approach the beacon.

As mentioned before this initial set it’s not enough in high
noise environments and as such, after each step is taken,
more data is collected filling a queue until a maximum

size, Nqueue. This queue is used as a circular buffer, in
which newer information replaces the oldest one. This allows
the collection of more data while already approaching the
objective, and, in a low noise environment, a quick approach
to the objective. The experiments in [7] suggest the use
of Nten = 4 and Nqueue = 12 so that, in a low noise
environment, after four steps, the robot is already targeting
the objective; in a high noise environment, the robot collects
data up to twelve steps and is still able to reach the objective.
Note that, since the computer has all the data regarding the
RSSI readings from all the nodes, once the robot changes
target, the data fed into the MLE algorithm is data previously
collected. So, instead of beginning with zero entries in
the queue, it begins with the most recent entries already
collected, up to a maximum of twelve. This data, which is
composed by positions and RSSI readings, is used during
the iterations to estimate the position of the beacon. The
first thing to is do, is to transform the RSSI reading in
signal space distances and then feed the positions and these
calculated distances to the MLE algorithm. This algorithm
uses the system with n equations that describe the distance
between two points:

(x̄beacon + x1)
2 + (ȳbeacon − y1)

2 = d21
...

(x̄beacon + xn)
2 + (ȳbeacon − yn)

2 = d2n

(1)

This, by subtracting the n − th equation, allows writing:
Ax̄ = b

where A =

 2(xn − x1) 2(yn − y1)
...

...
2(xn − xn−1) 2(yn − yn−1)

 and

b =

 d21 − x2
1 +x2

n − y21 + y2n
...

d2n−1 − x2
n−1 +x2

n − y2n−1 + y2n

.

The next step is to solve the system in order to get the

estimate beacon position, x̄ =

[
x̄beacon

ȳbeacon

]
:

x̄ = (ATA)−1AT b (2)

Note that this is actually the least squares method, which
minimizes the residual to obtain the beacon position estimate.
Finally, once the beacon estimate position is calculated, the
computer can calculate how much the robot needs to rotate to
face the target. This is done by transforming the Cartesian
coordinates (x, y) into polar coordinates (distance, angle)
and, finally, by subtracting to this calculated angle the angle
the robot is currently pointing to. This new generated move is
then requested back to the robot. All this process is depicted
in Figure 8.

5) Condition of arrival at the beacon: The final issue
to be taken into account by the computer is the arrival at
the beacon. The strategy to consider a valid arrival at the
beacon was based on observation of the behavior of the
RSSI with the distance. The conclusions from observation
were that near the beacon the RSSI values would easily be

Figure 11 – Estimator illustration using four samples

Fig. 8. Multi-lateration with MLE

30 31 32 33 34 35 36 37
28

30

32

34

36

38

40

42

44

46

RunStep

R
S

S
I

Reading one

Reading one

Arrival

Lost readings

Fig. 9. Arrival Condition

above thirty five. This value was then made into a threshold
so that, when the RSSI rises above it, the robot is in the
vicinity of the beacon. A problem still persists at this point.
The interferences allow such a high reading to be received far
away from the beacon. So, one reading above the threshold is
not enough to validate the arrival. Three readings above that
threshold were then made compulsory so that the program
considers a successful arrival. But, adding to this, one last
issue remains since the robot can move away from the
beacon or even go to an area that has destructive interference.
Therefore, in order to finally settle this, a second lower
threshold, with the value of thirty, was created so that the
count does not reset while the RSSI doesn’t drop below that
value. This is illustrated in Figure 9.

IV. EXPERIMENTAL RESULTS

The objective of this experiment is to test the capability
of navigation in a multi-beacon environment using the two
methods described before, oblivious and MLE, being the
only difference between them the move decision made. The
initial positions of the units can be seen in Figure 10 and
the task the robot has to perform is to go from the starting
point (0, 0), to beacon zero (0, 250), then go to beacon
one (45, 75) and, finally, return to beacon zero (0, 250).
All this based only on the received RSSI readings, i.e. no
previous encoder readings will be used to navigate back to
beacon zero. The following experiments were all done with
the transmission power set to −19.17dBm and in channel
26 as advised in [9]. Additionally the experiments were also
made in the same conditions and repeated several times, with
both methods. Remember that each beacon is actually a set

Beacon 0

Beacon 1

45cm

75cm

250cm

Robot

Fig. 10. Experiments Initial Setup

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Beacon 0 Beacon 1 Beacon 0

Current Beacon

RSSI received by node 2

RunStep

R
S

S
I

RSSI readings from beacon 0

RSSI readings from beacon 1

Arrival at beacon 0

Arrival at beacon 1

Fig. 11. Oblivious Method Experiment 1

of 3 nodes separated by 5cm and that there is only one node
in the robot.

By a quick analysis of Figures 11, 12, 13, 14, 15, and 16
it becomes clear clear that the number of steps needed to
make the first approach, using the MLE method, is much
larger than in the second and third approaches. This is
easily explained. While in the first approach there is a lack
of values on the queue of data fed to the MLE, in the
following approaches there are 12 values available to feed
the algorithm, which makes a much more precise estimation
possible. Another point of interest is the monotonic rise of
the RSSI values with this method, which shows how effective
the algorithm is. On the oblivious method, on the other hand,
there are rises and falls in the readings and the results are
much more inconstant. Also, while with the MLE, the first
approach is slow and the subsequent are faster, with the
oblivious method sometimes they are faster and sometimes
they are slower. This is not at all unexpected due to the
random nature of the oblivious algorithm.

Finally in experiment 1, with the MLE, a lot of going back
and forward is visible. Although this seems contradictory to
the algorithm, by observing the experiment, it was possible
to see that that was caused by the existence of obstacles

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Beacon 0 Beacon 1 Beacon 0

Current Beacon

RSSI received by node 2

RunStep

R
S

S
I

RSSI readings from beacon 0

RSSI readings from beacon 1

Arrival at beacon 0

Arrival at beacon 1

Fig. 12. Oblivious Method Experiment 2

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Beacon 0 Beacon 1 Beacon 0

Current Beacon

RSSI received by node 2

RunStep

R
S

S
I

RSSI readings from beacon 0

RSSI readings from beacon 1

Arrival at beacon 0

Arrival at beacon 1

Fig. 13. Oblivious Method Experiment 3

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

Beacon 0 Beacon 1 Beacon 0

Current Beacon

RSSI received by node 2

RunStep

R
S

S
I

RSSI readings from beacon 0

RSSI readings from beacon 1

Arrival at beacon 0

Arrival at beacon 1

Fig. 14. MLE Method Experiment 1

which did not allow the robot to move where it wanted to
and, therefore, collect RSSI values with a larger difference.
This shows a possible weak point of the MLE algorithm
– the big dependence on a good relationship between the
RSSI with the distance – which makes the robot, if trapped
in a location where the readings are very similar, to take
a while or not be able to proceed. A possible solution for
the MLE problem mentioned above is to check the positions
the robot was at, and where it is. Based on that, and on
the beacon estimates, is possible to make the robot move
somewhere he hasn’t been in recent time so that it can collect
more and different information. Also interesting would be to
perform these experiments in an obstacle free environment.
This would avoid interferences caused by the obstacles in the
algorithms, either helpful or detrimental. Another interesting
point would be to compare the results of a robot approaching
a beacon with a robot approaching a robot. These tests are
appealing because the reactivity of the methods would be put
to the test.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

Beacon 0 Beacon 1 Beacon 0

Current Beacon

RSSI received by node 2

RunStep

R
S

S
I

RSSI readings from beacon 0

RSSI readings from beacon 1

Arrival at beacon 0

Arrival at beacon 1

Fig. 15. MLE Method Experiment 2

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Beacon 0 Beacon 1 Beacon 0

Current Beacon

RSSI received by node 2

RunStep

R
S

S
I

RSSI readings from beacon 0

RSSI readings from beacon 1

Arrival at beacon 0

Arrival at beacon 1

Fig. 16. MLE Method Experiment 3

V. CONCLUSIONS

The resulting work was experimentally evaluated, with
emphasis on the comparative evaluation of the oblivious
and MLE methods. This evaluation proved to be possible to
navigate in a multi-beacon environment using only the RSSI
information. In the performed experiments, the MLE has a
slow start, since it has to collect information to make a good
estimate. But, after the initial steps, needed to acquire a good
notion of the target direction, MLE was much faster directed
to the position where the beacon was, with relatively little
deviations. The oblivious method, on the other hand, shows
a constant and higher tendency to deviate from the beacon
due to its randomness. Finally, the MLEs big dependence on
a good relationship between the RSSI and the distance was
exposed as a weak point when using this method.

REFERENCES

[1] Q. Limited, “Quadratec,” in http://www.quadratec-
ltd.co.uk/Security Surveillance systems.htm, 14-10-2009.

[2] S. Baek, S. Ahn, and S.-Y. Oh, “Fast localization algorithm for the
cleaning robot by using self-organization map,” International Sympo-
sium on Computational Intelligence in Robotics and Automation, pp.
19–24, 2007.

[3] A. S. Fukunaga, Y. Cao, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,” Autonomous Robots, vol. 4, pp.
226–234, 1997.

[4] H. Li, L. Almeida, Z. Wang, and Y. Sun, “Relative positions within
small teams of mobile units,” Mobile Ad-Hoc and Sensor Networks,
2007.

[5] Y.Shang, W. Rumi, T. Zhang, and M. P. J. Fromherz, “Location from
mere connectivity,” 2003, pp. 201–212.

[6] H. Li, L. Almeida, F. Carramate, Z. Wang, and Y. Sun, “Connectivity-
aware motion control among autonomous mobile units,” SIES 2008,
International Symposium on Industrial Embedded Systems, 2008., pp.
155–162, 2008.

[7] ——, “Using low-power radios for mobile robots navigation,” FET 2009
- 8th IFAC Conference on Fieldbuses and Networks in industrial and
embedded systems, 2009.

[8] F. Santos, G. Currente, L. Almeida, N. Lau, and L. S. Lopes, “Self-
configuration of an adaptive tdma wireless communication protocol for
teams of mobile robots,” 2007.

[9] Crossbow, “Avoiding rf interference between wifi and zigbee.”

