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Abstract

This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach
uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time
fashion. When teams of robots localize themselves in the same environment, probabilistic methods are
employed to synchronize each robot’s belief whenever one robot detects another. As a result, the robots
localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple
robot platforms. The technique has been implemented and tested using two mobile robots equipped with
cameras and laser range-finders for detecting other robots. The results, obtained with the real robots
and in series of simulation runs, illustrate drastic improvements in localization speed and accuracy when
compared to conventional single-robot localization. A further experiment demonstrates that under certain
conditions, successful localization is only possible if teams of heterogeneous robots collaborate during
localization.

1 Introduction

Sensor-based robot localization has been recognized as one of the fundamental problems in mobile robotics.
The localization problem is frequently divided into two subproblems: Position tracking, which seeks to
compensate small dead reckoning errors under the assumption that the initial position is known, and global
self-localization, which addresses the problem of localization with no a priori information. The latter prob-
lem is generally regarded as the more difficult one, and recently several approaches have provided sound
solutions to this problem. In recent years, a flurry of publications on localization—which includes a book
solely dedicated to this problem [5]—document the importance of the problem. According to Cox [15],
“Using sensory information to locate the robot in its environment is the most fundamental problem to
providing a mobile robot with autonomous capabilities.”

However, virtually all existing work addresses localization of a single robot only. The problem of
cooperative multi-robot localization remains virtually unexplored. At first glance, one could solve the
problem of localizing N robots by localizing each robot independently, which is a valid approach that
might yield reasonable results in many environments. However, if robots can detect each other, there is
the opportunity to do better. When a robot determines the location of another robot relative to its own, both
robots can refine their internal beliefs based on the other robot’s estimate, hence improve their localization
accuracy. The ability to exchange information during localization is particularly attractive in the context of



global localization, where each sight of another robot can reduce the uncertainty in the estimated location
dramatically.

The importance of exchanging information during localization is particularly striking for heteroge-
neous robot teams. Consider, for example, a robot team where some robots are equipped with expen-
sive, high-accuracy sensors (such as laser range-finders), whereas others are only equipped with low-cost
sensors such as sonar sensors. By transferring information across multiple robots, sensor information
can be leveraged. Thus, collaborative multi-robot localization facilitates the amortization of high-end
high-accuracy sensors across teams of robots. Consequently, phrasing the problem of localization as a
collaborative one offers the opportunity of improved performance from less data.

This paper proposes an efficient probabilistic approach for collaborative multi-robot localization. Our
approach is based on Markov localization [51, 62, 34, 9], a family of probabilistic approaches that have
recently been applied with great practical success to single-robot localization [7, 39, 23, 67]. In contrast
to previous research, which relied on grid-based or coarse-grained topological representations of a robot’s
state space, our approach adopts a sampling-based representation [17, 21], which is capable of approx-
imating a wide range of belief functions in real-time. To transfer information across different robotic
platforms, probabilistic “detection models” are employed to model the robots’ abilities to recognize each
other. When one robot detects another, these detection models are used to synchronize the individual
robots’ beliefs, thereby reducing the uncertainty of both robots during localization. To accommodate the
noise and ambiguity arising in real-world domains, detection models are probabilistic, capturing the reli-
ability and accuracy of robot detection. The constraint propagation is implemented using sampling, and
density trees [38, 49, 52, 53] are employed to integrate information from other robots into a robot’s belief.

While our approach is applicable to any sensor capable of (occasionally) detecting other robots, we
present an implementation that uses color cameras and laser range-finders for robot detection. The param-
eters of the corresponding probabilistic detection model are learned using a maximum likelihood estima-
tor. Extensive experimental results, carried out with two robots in an indoor environment, illustrate the
appropriateness of the approach.

In what follows, we will first describe the necessary statistical mechanisms for multi-robot localization,
followed by a description of our sampling-based and Monte Carlo localization technique in Section 3. In
Section 4 we present our vision-based method to detect other robots. Experimental results are reported in
Section 5. Finally, related work is discussed in Section 6, followed by a discussion of the advantages and
limitations of the current approach.

2 Multi-Robot Localization

Let us begin with a mathematical derivation of our approach to multi-robot localization. In the remainder
we assume that robots are given a model of the environment (e.g., a map [66]), and that they are given
sensors that enable them to relate their own position to this model (e.g., range finders, cameras). We also
assume that robots can detect each other, and that they can perform dead-reckoning. All of these senses
are typically confounded by noise. Further below, we will make the assumption that the environment is
Markov (i.e., the robots’ positions are the only measurable state), and we will also make some additional
assumptions necessary for factorial representations of joint probability distributions—as explained further
below.

Throughout this paper, we adopt a probabilistic approach to localization. Probabilistic methods have
been applied with remarkable success to single-robot localization [51, 62, 34, 9, 23, 8, 29], where they



have been demonstrated to solve problems like global localization and localization in dense crowds.

2.1 Data

Let N be the number of robots, and let dn denote the data gathered by the n-th robot, with � � n � N .
Obviously, each dn is a sequence of three different types of information:

1. Odometry measurements. Each robot continuously monitors its wheel encoders (dead-reckoning)
and generates, in regular intervals, odometric measurements. These measurements, which will be
denoted a, specify the relative change of position according to the wheel encoders.

2. Environment measurements. The robots also query their sensors (e.g., range finders, cameras) in
regular time intervals, which generates measurements denoted by o. The measurements o establish
the necessary reference between the robot’s local coordinate frame and the environment’s frame of
reference. In our experiments below, o will be laser range scans or ultrasound measurements

3. Detections. Additionally, each robot queries its sensors for the presence or absence of other robots.
The resulting measurements will be denoted r. Robot detection might be accomplished through
different sensors than environment measurements. Below, in our experiments, we will use a combi-
nation of visual sensors (color camera) and range finders for robot detection.

The data of all robots is denoted d with

d � d� � d� � � � � � dN � (1)

2.2 Markov Localization

Before turning to the topic of this paper—collaborative multi-robot localization—let us first review a
common approach to single-robot localization, which our approach is built upon: Markov localization.
Markov localization uses only dead reckoning measurements a and environment measurements o; it ig-
nores detections r. In the absence of detections (or similar information that ties the position of one robot
to another), information gathered at different platforms cannot be integrated. Hence, the best one can do
is to localize each robot individually, independently of all others.

The key idea of Markov localization is that each robot maintains a belief over its position. The belief
of the n-th robot at time t will be denoted Bel�t�

n
�L�. Here L is a three-dimensional random variable

composed of a robot’s x-y position and its heading direction � (we will use the terms position, pose and
location interchangeably). Accordingly, Bel�t�

n
�L � l� denotes the belief of the n-th robot of being at a

specific location l. Initially, at time t � �, Bel���
n
�L� reflects the initial knowledge of the robot. In the

most general case, which is being considered in the experiments below, the initial position of all robots is
unknown, hence Bel���

n
�L� is initialized by a uniform distribution.

At time t, the belief Bel�t�
n
�L� is the posterior with respect to all data collected up to time t:

Bel�t�
n
�L� � P �L�t�

n
j d�t�

n
� (2)

where d�t�
n

denotes the data collected by the n-th robot up to time t. By assumption, the most recent
sensor measurement in d�t�

n
is either an environment or an odometry measurement. Both cases are treated

differently, so let’s consider the former first:
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Fig. 1: Perception model for laser range finders. The x-axis depicts the expected measurement, the y-axis the
measured distance, and the vertical axis depicts the likelihood. The peak marks the most likely measurement. The
robots are also given a map of the environment, to which this model is applied.

1. Sensing the environment: Suppose the last item in d�t�
n

is an environment measurement, denoted
o�t�
n

. Using the Markov assumption (and exploiting that the robot position does not change when the
environment is sensed), we obtain for any location l
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�L � l� � P �L�t�

n
� l j d�t�

n
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n
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� l� Bel�t���

n
�L � l� (3)

where � is a normalizer that does not depend on the robot position l. Notice that the posterior belief
Bel�t�

n
�L � l� of being at location l after incorporating o�t�

n
is obtained by multiplying the perceptual

model P �o�t�
n
j L�t�

n
� l� with the prior belief Bel�t���

n
�L � l�.

This observation suggests the following incremental update equation (we omit the time index t and
the state variable L for brevity):

Beln�l� �� �P �on j l� Beln�l� (4)



Fig. 2: Motion model representing the uncertainty in robot motion: The robot’s belief starts with a Dirac distribution
and the lines represent the trajectories of the robot. Both distributions are three-dimensional (in hx� y� �i-space) and
shown are their 2D projections into hx� yi-space.

The conditional probability P �on j l� is called the environment perception model of robot n and
describes the likelihood of perceiving on given that the robot is at position l. In Markov localization,
it is assumed to be given and constant over time. For proximity sensors such as ultrasound sensors
or laser range-finders, the probability P �on j l� can be approximated by P �on j ol�, which is the
probability of observing on conditioned on the expected measurement ol at location l. The expected
measurement, a distance in this case, is easily computed from the map using ray tracing. Figure 1
shows this perception model for laser range-finders. Here the x-axis is the distance ol expected given
the world model, and the y-axis is the distance on measured by the sensor. The function is a mixture
of a Gaussian (centered around the correct distance ol), a Geometric distribution (modeling overly
short readings) and a Dirac distribution (modeling max-range readings). It integrates the accuracy
of the sensor with the likelihood of receiving a “random” measurement (e.g., due to obstacles not
modeled in the map [23]).

2. Odometry: Now suppose the last item in d�t�
n

is an odometry measurement, denoted a�t�
n

. Using the
Theorem of Total Probability and exploiting the Markov property, we obtain

Bel�t�
n
�L � l� � P �L�t�

n
� l j d�t�

n
�

�
Z
P �L�t�

n
� l j d�t�

n
� L�t���

n
� l�� P �L�t���

n
� l� j d�t�

n
� dl�

�
Z
P �L�t�

n
� l j a�t�

n
� L�t���

n
� l�� P �L�t���

n
� l� j d�t���

n
� dl�

�
Z
P �L�t�

n
� l j a�t�

n
� L�t���

n
� l�� Bel�t���

n
�L � l�� dl� (5)

which suggests the incremental update equation:

Beln�l� ��
Z
P �l j an� l�� Beln�l�� dl� (6)



Here P �l j an� l�� is called the motion model of robot n. Figure 2 illustrates the resulting densities for
two example paths. As the figure suggests, a motion model is basically a model of robot kinematics
annotated with uncertainty.

These equations together form the basis of Markov localization, an incremental probabilistic algorithm
for estimating robot positions. Markov localization relies on knowledge of P �on j l� and P �l j an� l��.
The former conditional typically requires a model (map) of the environment. As noticed above, Markov
localization has been applied with great practical success to mobile robot localization. However, it is only
applicable to single-robot localization, and cannot take advantage of robot detection measurements. Thus,
in its current form it cannot exploit relative information between different robots’ positions in any sensible
way.

2.3 Multi-Robot Markov Localization

The key idea of multi-robot localization is to integrate measurements taken at different platforms, so that
each robot can benefit from data gathered by robots other than itself.

At first glance, one might be tempted to maintain a single belief over all robots’ locations, i.e.,

L � L� � L� � � � �� LN (7)

Unfortunately, the dimensionality of this vector grows with the number of robots. Distributions over L
are, hence, exponential in the number of robots. Moreover, since each robot position is described by three
values (its x-y position and its heading direction �), L is of dimension �N . Thus, modeling the joint
distribution of the positions of all robots is infeasible already for small values of N .

Our approach maintains factorial representations; i.e., each robot maintains its own belief function
that models only its own uncertainty, and occasionally, e.g., when a robot sees another one, information
from one belief function is transfered from one robot to another. The factorial representation assumes that
the distribution of L is the product of its N marginal distributions:

P �L
�t�
� � � � � � L

�t�
N
j d�t�� � P �L

�t�
� j d�t�� � � � � � P �L

�t�
N
j d�t�� (8)

Strictly speaking, the factorial representation is only approximate, as one can easily construct situations
where the independence assumption does not hold true. However, the factorial representation has the
advantage that the estimation of the posteriors is conveniently carried out locally on each robot. In the
absence of detections, this amounts to performing Markov localization independently for each robot. De-
tections are used to provide additional constraints between the estimated pairs of robots, which will lead
to refined local estimates.

To derive how to integrate detections into the robots’ beliefs, let us assume that robot n is detected by
robot m and the last item in d�t�

m
is a detection variable, denoted r�t�

m
. For the moment, let us assume this

is the only such detection variable in d�t�, and that it provides information about the location of the n-th
robot relative to robot m (with m �� n). Then

Bel�t�
n
�L � l� � P �L�t�

n
� l j d�t��

� P �L�t�
n
� l j d�t�

n
� P �L�t�

n
� l j d�t�

m
�

� P �L�t�
n
� l j d�t�

n
�
Z
P �L�t�

n
� l j L�t�

m
� l�� r�t�

m
�P �L�t�

m
� l� j d�t���

m
� dl� (9)



which suggests the incremental update equation:

Beln�l� �� Beln�l�
Z
P �Ln � l j Lm � l�� rm� Belm�l

�� dl� (10)

Here
R
P �Ln � l j Lm � l�� rm� Belm�l�� dl� describes robot m’s belief about the detected robot’s

position. The reader may notice that, by symmetry, the same detection can be used to constrain the
m-th robot’s position based on the belief of the n-the robot. The derivation is omitted since it is fully
symmetrical.

Table 1 summarizes the multi-robot Markov localization algorithm. The time index t and the state
variable L is omitted whenever possible. Of course, this algorithm is only an approximation, since

for each location l do /* initialize the belief */

Beln�l� �� P �L���
n

� l�

end for

forever do

if the robot receives new sensory input on do

for each location l do /* apply the perception model */

Beln�l� �� �P �on j l� Beln�l�
end for

end if

if the robot receives a new odometry reading an do

for each location l do /* apply the motion model */

Beln�l� ��
Z
P �l j an� l�� Beln�l�� dl�

end for
end if

if the robot is detected by the m-th robot do

for each location l do /* apply the detection model */

Beln�l� �� Beln�l�
Z
P �Ln � l j Lm � l�� rm� Belm�l

�� dl�

end for
end if

end forever

Table 1: Multi-robot Markov localization algorithm for robot number n.

it makes certain independence assumptions (e.g. it excludes that a sensor reports “I saw a robot, but I
cannot say which one”), and strictly speaking it is only correct if there is only a single r in the entire
run. Furthermore, repeated integration of another robots’ belief according to (9) results in using the same



evidence twice. Hence, robots can get overly confident in their position. To reduce the danger arising
from the factorial distribution, our approach uses the following two rules.

1. Our approach ignores negative sights, i.e., events where a robot does not see another robot.

2. It includes a counter that, once a robot has been sighted, blocks the ability to see the same robot
again until the detecting robot has traveled a pre-specified distance (2.5m in our experiments). In
our current approach, this distance is based purely on experience and in future work we will test the
applicability of formal information-theoretic measures for the errors introduced by our factorized
representation (see e.g. [6]).

In our practical experiments described below we did not realize any evidence that these two rules are not
sufficient. Instead, our approach to collaborative localization based on the factorial representation still
yields superior performance over robot teams with individual localization and without any robot detection
capabilities.

3 Sampling and Monte Carlo Localization

The previous section left open how the belief about the robot position is represented. In general, the space
of all robot positions is continuous-valued and no parametric model is known that would accurately model
arbitrary beliefs in such robotic domains. However, practical considerations make it impossible to model
arbitrary beliefs using digital computers.

3.1 Monte Carlo Localization

The key idea here is to approximate belief functions using a Monte Carlo method. More specifically,
our approach is an extension of Monte Carlo localization (MCL), which was recently proposed in [17,
21]. MCL is a version of Markov localization that relies on sample-based representations and the sam-
pling/importance re-sampling algorithm for belief propagation [58]. MCL represents the posterior beliefs
Beln�L� by a set of K weighted random samples, or particles, denoted S � fsi j i � ���Kg. A sample
set constitutes a discrete distribution and samples in MCL are of the type

si � hli� pii (11)

where li � hxi� yi� �ii denotes a robot position, and pi � � is a numerical weighting factor, analogous to a
discrete probability. For consistency, we assume

P
K

i�� pi � �. In the remainder we will omit the subscript
i whenever possible.

In analogy with the general Markov localization approach outlined in Section 2, MCL proceeds in two
phases:

1. Robot motion. When a robot moves, MCL generates K new samples that approximate the robot’s
position after the motion command. Each sample is generated by randomly drawing a sample from
the previously computed sample set, with likelihood determined by their p-values. Let l� denote the
position of this sample. The new sample’s l is then generated by generating a single, random sample
from P �l j l�� a�, using the odometry measurement a. The p-value of the new sample is K��.
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Fig. 3: Sampling-based approximation of the position belief for a non-sensing robot. The solid line displays the
trajectory, and the samples represent the robot’s belief at different points in time.

Figure 3 shows the effect of this sampling technique for a single robot, starting at an initial known
position (bottom center) and executing actions as indicated by the solid line. As can be seen there,
the sample sets approximate distributions with increasing uncertainty, representing the gradual loss
of position information due to slippage and drift.

2. Environment measurements are incorporated by re-weighting the sample set, which is analogous
to Bayes rule in Markov localization. More specifically, let hl� pi be a sample. Then

p �� � P �o j l� (12)

where o is a sensor measurement, and � is a normalization constant that enforces
P

K

i�� pi � �. The
incorporation of sensor readings is typically performed in two phases, one in which p is multiplied
by P �o j l�, and one in which the various p-values are normalized. An algorithm to perform this
re-sampling process efficiently in O�K� time is given in [12].

In practice, we have found it useful to add a small number of uniformly distributed, random samples after
each estimation step [21]. Formally, these samples can be understood as a modified motion model that
allows, with very small likelihood, arbitrary jumps in the environment. The random samples are needed
to overcome local minima: Since MCL uses finite sample sets, it may happen that no sample is generated
close to the correct robot position. This may be the case when the robot loses track of its position. In
such cases, MCL would be unable to re-localize the robot. By adding a small number of random samples,
however, MCL can effectively re-localize the robot, as documented in our experiments described in [21]
(see also the discussion on ’loss of diversity’ in [18]).

Another modification to the basic approach is based on the observation that the best sample set sizes
can vary drastically [38]. During global localization, a robot may be completely ignorant as to where
it is; hence, it’s belief uniformly covers its full three-dimensional state space. During position tracking,
on the other hand, the uncertainty is typically small. MCL determines the sample set size on-the-fly: It
typically uses many samples during global localization or if the position of the robot is lost, and only a
small number of samples is used during position tracking (see [21] for details).
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Fig. 4: Global localization: (a) Initialization, (b) ambiguity due to symmetry, and (c) achieved localization.

3.1.1 Properties of MCL

MCL is based on a family of techniques generically known as particle filters, or sampling/importance re-
sampling [58]. An overview and discussion of the properties of these filters can be found in [18]. Particle
filters are known alternatively as the bootstrap filter [26], the Monte-Carlo filter [37], the Condensation
algorithm [32, 33], or the survival of the fittest algorithm [35].

A nice property of particle filters is that they can universally approximate arbitrary probability dis-
tributions. As shown in [64], the sample-based distributions smoothly approximate the “correct” one at
a rate of ��

p
K as K goes to infinity and under conditions that are true for MCL. The sample set size

naturally trades off accuracy and computation. The true advantage, however, lies in the way MCL places
computational resources. By sampling in proportion to the likelihood, MCL focuses its computational
resources on regions with high likelihood, where things really matter.

MCL also lends itself nicely to an any-time implementation [16, 72]. Any-time algorithms can gen-
erate an answer at any time; however, the quality of the solution increases over time. The sampling step
in MCL can be terminated at any time. Thus, when a sensor reading arrives, or an action is executed,
sampling is terminated and the resulting sample set is used for the next operation.

3.1.2 A Global Localization Example

Figure 4(a) – (c) illustrates MCL when applied to localization of a single mobile robot. Shown there is a
series of sample sets (projected into 2D) generated during global localization of the mobile robot Rhino
operating in an office building. In Figure 4(a), the robot is globally uncertain; hence the samples are
spread uniformly over the free-space. Figure 4(b) shows the sample set after approximately 1.5 meters of
robot motion, at which point MCL has disambiguated the robot’s position mainly up to a single symmetry.
Finally, after another 4 meters of robot motion, the ambiguity is resolved, the robot knows where it is.
The majority of samples is now centered tightly around the correct position, as shown in Figure 4(c). All
necessary computation is carried out in real-time on a low-end PC.

3.2 Multi-Robot MCL

The extension of MCL to collaborative multi-robot localization is not straightforward. This is because
under our factorial representation, each robot maintains its own, local sample set. When one robot detects
another, both sample sets are synchronized using the detection model, according to the update equation

Beln�L � l� �� Beln�L � l�
Z
P �Ln � l j Lm � l�� rm� Belm�L � l�� dl� (13)



(a) (b)

Fig. 5. (a) Map of the environment along with a sample set representing the robot’s belief during global localization,
and (b) its approximation using a density tree. The tree transforms the discrete sample set into a continuous distribu-
tion, which is necessary to generate new importance factors for the individual sample points representing the belief
of another robot.

Notice that this equation requires the multiplication of two densities. Since samples in Beln�L� and
Belm�L� are drawn randomly, it is not straightforward to establish correspondence between individual
samples in Beln�L� and

R
P �Ln � l j Lm � l�� rm� Belm�L � l�� dl�.

To remedy this problem, our approach transforms sample sets into density functions using density
trees [38, 49, 52, 53]. These methods approximate sample sets using piecewise constant density functions
represented by a tree. Each node in a density tree is annotated with a hyper-rectangular subspace of the
three-dimensional state space of the robot. Initially, all samples are assigned to the root node, which
covers the entire state space. The tree is grown by recursively splitting each node until a certain stopping
condition is fulfilled (see [69] for details). If a node is split, its interval is divided into two equally sized
intervals along its longest dimension.

Figure 5 shows an example sample set along with the tree extracted from this set. The resolution of
the tree is a function of the densities of the samples: the more samples exist in a region of space, the finer-
grained the tree representation. After the tree is grown, each leaf’s density is given by the quotient of the
sum of all weights p of all samples that fall into this leaf, divided by the volume of the region covered by
the leaf. The latter amounts to maximum likelihood estimation of (piecewise) constant density functions.

To implement the update equation, our approach approximates the density in Eq. 13 using samples,
just as described above. The resulting sample set is then transformed into a density tree. These density
values are then multiplied into each individual sample hl� pi of the detected robot n according to Eq. 14.

p �� �
Z
P �l j Ln � l�� rn� Bel�Ln � l�� dl� (14)

The resulting sample set is a refined density for the n-th robot, reflecting the detection and the belief of
the m-th robot. Please note that the same update rule can be applied in the other direction, from robot n
to robot m. Since the equations are completely symmetric, they are omitted here.

4 Probabilistic Detection Model

To implement the multi-robot Monte-Carlo localization technique, robots must possess the ability to sense
each other. The crucial component is the detection model P �Ln � l j Lm � l�� rm� which describes
the conditional probability that robot n is at location l, given that robot m is at location l� and perceives
robot n with measurement rm. From a mathematical point of view, our approach is sufficiently general to



Fig. 6: Training data of successful detections for the robot perception model. Each image in the top row shows a
robot, marked by a unique, colored marker to facilitate recognition. The bottom row shows the corresponding laser
scans and the dark line in each diagram depicts the extracted location of the robot in polar coordinates, relative to
the position of the detecting robot (the laser scans are scaled for illustration purposes).

accommodate a wide range of sensors for robot detection, assuming that the conditional density P �Ln j
Lm� rm� is adjusted accordingly.

We will now describe a specific detection method that integrates information from multiple sensor
modalities. This method, which integrates camera and range information, will be employed throughout
our experiments (see [42] for more details).

4.1 Detection

To determine the relative location of other robots, our approach combines visual information obtained
from an on-board camera, with proximity information coming from a laser range-finder. Camera images
are used to detect other robots, and laser range-finder scans are used to determine the relative position of
the detected robot and its distance. The top row in Figure 6 shows examples of camera images recorded
in a corridor. Each image shows a robot, marked by a unique, colored marker to facilitate its recognition.
Even though the robot is only shown with a fixed orientation in this figure, the marker can be detected
regardless of the robot’s orientation.

To find robots in a camera image, our approach first filters the image by employing local color his-
tograms and decision trees tuned to the colors of the marker. Thresholding is then employed to search for
the marker’s characteristic color transition. If found, this implies that a robot is present in the image. The
small black rectangles, superimposed on each marker in the images in Figure 6, illustrate the center of the
marker as identified by this visual routine. Currently, images are analyzed at a rate of 1Hz, with the main
delay being caused by the camera’s parallel port interface.1 This slow rate is sufficient for the application
at hand.

Once a robot has been detected, the current laser scan is analyzed for the relative location of the robot
in polar coordinates (distance and angle). This is done by searching for a convex local minimum in the
distances of the scan, using the angle obtained from the camera image as a starting point. Here, tight
synchronization of photometric and range data is very important, especially because the detecting robot

1With a state-of-the-art memory-mapped frame grabber the same analysis would be feasible at frame rate.
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Fig. 7: Gaussian density representing the robot perception model. The x-axis represents the deviation of relative
angle and the y-axis the error in the distance between the two robots.

might sense and rotate simultaneously. In our framework, sensor synchronization is fully controllable
because all data is tagged with timestamps. We found that the described multi-sensor method is robust
and gives accurate results even in cluttered environments. The bottom row in Figure 6 shows laser scans
and the result of our analysis for the example situations depicted in the top row of the same figure. Each
scan consists of 180 distance measurements with approximately 5cm accuracy, spaced at 1 degree angular
distance. The dark line in each diagram depicts the extracted location of the robot in polar coordinates,
relative to the position of the detecting robot. All scans are scaled for illustration purposes.

4.2 Learning the Detection Model

Next, we have to devise a probabilistic detection model of the type P �Ln j Lm� rm�. To recap, rm denotes
a detection event by the m-th robot, which comprises the identity of the detected robot (if any), and its
relative location in polar coordinates. The variable Ln describes the location of the detected robot (here
n with m �� n refers to an arbitrary other robot), and Lm ranges over locations of the m-th robot. As
described above, we will restrict our considerations to “positive” detections, i.e., cases where a robot m
did detect a robot n. Negative detection events (a robot m does not see a robot n) are beyond the scope of
this paper and will be ignored.

The detection model is trained using data. More specifically, during training we assume that the exact
location of each robot is known. Whenever a robot takes a camera image, its location is analyzed as
to whether other robots are in its visual field. This is done by a geometric analysis of the environment,
exploiting the fact that the locations of all robots are known during training. Then, the image is analyzed,
and for each detected robot the identity and relative location is recorded. This data is sufficient to train the
detection model P �Ln j Lm� rm�.

robot detected no robot detected
robot in field of view 93.3% 6.7%
no robot in field of view 3.5% 96.5%

Table 2: Rates of false-positives and false-negatives for our detection routine.
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Robin Path

Fig. 8: Map of the environment along with a typical path taken by Robin during an experiment. Marion is operating
in the lab facing towards the opening of the hallway.

In our implementation, we employ a parametric mixture model to represent P �Lm j Ln� rn�. Our
approach models false-positive and false-negative detections using a binary random variable. Table 2
shows the ratios of these errors estimated from a training set of 112 images, in half of which another robot
is within the field of view. As can be seen, our current visual routines have a 6.7% chance of not detecting
a robot in their visual field, and only a 3.5% chance of erroneously detecting a robot when there is none.

The Gaussian distribution shown in Figure 7 models the error in the estimation of a robot’s location.
Here the x-axis represents the angular error, and the y-axis the distance error. This Gaussian has been
obtained through maximum likelihood estimation based on the training data. As is easy to be seen, the
Gaussian is zero-centered along both dimensions, and it assigns low likelihood to large errors. The corre-
lation between both components of the error, angle and distance, are approximately zero, suggesting that
both errors might be independent. Assuming independence between the two errors, we found the mean
error of the distance estimation to be 48.3cm, and the mean angular error to be 2.2 degree.

To obtain the training data, the “true” location was not determined manually; instead, MCL was ap-
plied for position estimation (with a known starting position and very large sample sets). Empirical results
in [17] suggest that MCL is sufficiently accurate for tracking a robot with only a few centimeters error.
The robots’ positions, while moving at speeds like 30 cm/sec through our environment, were synchronized
and then further analyzed geometrically to determine whether (and where) robots are in the visual fields
of other robots. As a result, data collection is extremely easy as it does not require any manual labeling;
however, the error in MCL leads to a slightly less confined detection model than one would obtain with
manually labeled data (assuming that the accuracy of manual position estimation exceeds that of MCL).

5 Experimental Results

In this section we present experiments conducted with real and simulated robots. The central question
driving our experiments was: To what extent can cooperative multi-robot localization improve the local-
ization quality, when compared to conventional single-robot localization?

In the first set of experiments, our approach was tested using two Pioneer robots (Robin and Mar-
ian) marked optically by a colored marker, as shown in Figure 6. In order to evaluate the benefits of
multi-robot localization in more complex scenarios, we additionally performed experiments in simulated
environments. These experiments are described in Section 5.2.
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Fig. 9: Detection event: (a) Sample set of Marian as it detects Robin in the corridor. (b) Sample set reflecting
Marian’s belief about Robin’s position. (c) Tree-representation of this sample set and (d) corresponding density.

Marian

(a) (b)

Fig. 10: Sample set representing Robin’s belief (a) as it passes Marian and (b) after incorporating Marian’s mea-
surement.

5.1 Experiments Using Real Robots

Figure 8 shows the setup of our experiments along with a part of the occupancy grid map [66] used for
position estimation. Marian operates in our lab, which is the cluttered room adjacent to the corridor.
Because of the non-symmetric nature of the lab, the robot knows fairly well where it is (the samples
representing Marian’s belief are plotted in Figure 9 (a)). Figure 8 also shows the path taken by Robin,
which was in the process of global localization. Figure 10 (a) represents the typical belief of Robin when
it passes the lab in which Marian is operating. Since Robin already moved several meters in the corridor,
it developed a belief which is centered along the main axis of the corridor. However, the robot is still
highly uncertain about its exact location within the corridor and even does not know its global heading
direction. Please note that due to the lack of features in the corridor the robots generally have to travel a
long distance until they can resolve ambiguities in the belief about their position.

The key event, illustrating the utility of cooperation in localization, is a detection event. More specif-
ically, Marian, the robot in the lab, detects Robin, as it moves through the corridor (see Figure 6 for the
camera image and laser range scan of a characteristic measurement of this type). Using the detection
model described in Section 4, Marian generates a new sample set as shown in Figure 9 (b). This sample
set is converted into a density using density trees (see Figure 9 (c) and (d)). Marian then transmits this
density to Robin which integrates it into its current belief. The effect of this integration on Robin’s belief
is shown in Figure 10 (b). It shows Robin’s belief after integrating the density representing Marian’s de-
tection. As this figure illustrates, this single incident almost completely resolves the uncertainty in Robin’s
belief.

We conducted ten experiments of this kind and compared the performance to conventional MCL for
single robots which ignores robot detections. To measure the performance of localization we determined
the true locations of the robot by measuring the starting position of each run and performing position track-
ing off-line using MCL. For each run, we then computed the estimation error at the reference positions.
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Fig. 11: Comparison between single-robot localization and localization making use of robot detections. The x-axis
represents the time and the y-axis represents the estimation error obtained by averaging over ten experiments.

The estimation error is measured by the average distance of all samples from the reference position. The
results are summarized in Figure 11. The graph plots the estimation error as a function of time, averaged
over the ten experiments, along with their 95% confidence intervals (bars). As can be seen in the figure,
the quality of position estimation increases much faster when using multi-robot localization. Please note
that the detection event typically took place 60-100 seconds after the start of an experiment.

Obviously, this experiment is specifically well-suited to demonstrate the advantage of detections in
multi-robot localization, since the robots’ uncertainties are somewhat orthogonal, making the detection
highly effective. In order to test the performance of our approach in more complex situations, we addi-
tionally performed experiments in two simulation environments.

5.2 Simulation Experiments

In the following experiments we used a simulation tool which simulates robots on the sensor level, pro-
viding raw odometry and proximity measurements (see [60] for details). Since the simulation includes
sensor noise, the results are directly transferable to real robots. Robot detections were simulated by using
the positions of the robots and visibility constraints extracted from the map. Noise was added to these
detections according to the errors extracted from the training data using our real robots. It should be noted
that false-positive detections were not considered in these experiments (see Section 7.2 for a discussion of
false-positive detections).

5.2.1 Homogeneous Robots

In the first simulation experiment we use eight robots, which are all equipped with ultrasound sensors.
The task of the robots is to perform global localization in the hallway environment shown in Figure 12 (a).
This environment is particularly challenging for single robot systems since a robot has to either pass the
open space on the left corridor marked “A”, or it has to move through all other hallways marked “B”,
“C”, and “D” to uniquely determine its position. However, the localization task remains hard even if there
are multiple robots which can detect each other and can exchange their beliefs. Since all robots have to
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Fig. 12: (a) Symmetric hallway environment. (b) Localization error for eight robots performing global localization
simultaneously. The dashed line shows the error over time when performing single-robot MCL and the solid line
plots the error using our multi-robot method.
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Robot position
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Fig. 13: Hexagonal environment with edges of length 8 meters. Distinguishing obstacles can only be detected either
with (a) sonar sensors or (b) laser range-finders. Typical sample sets representing the position uncertainty of robots
equipped with (a) sonar sensors or (b) laser range-finders.

perform global localization at the same time, several robot detections and belief transfers are necessary to
significantly reduce the distance to be traveled by each robot.

As in the previous experiment, we compare the performance of our multi-robot localization approach
to the performance of single-robot localization ignoring robot detections. Figure 12 (b) shows the local-
ization errors for both methods averaged over eight runs of global localization using eight robots simulta-
neously in each run. The plot shows that the exploitation of detections in robot teams results in a highly
superior localization performance. The surprisingly high error values for teams not performing collabora-
tive localization are due to the fact that even after 600 seconds, some of the robots are still uncertain about
their position.

Another measure of performance is the average time it takes for a robot to find out where it is. We
assume that a robot has successfully localized itself, if the localization error falls below 1.5 meters. As
mentioned above, this error is given by averaging over the distance of all samples from a reference po-
sition. Without making use of robot detections, a robot needs ��� ��� seconds to uniquely determine its
position. Our approach to multi-robot localization reduces this time by 60% to ��� ��� seconds.
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Fig. 14: Localization error for robots equipped with sonar sensors (black lines) or laser range-finders (grey lines).
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5.2.2 Heterogeneous Robots

The goal of this experiment is to demonstrate the potential benefits for heterogeneous teams of robots.
Here, the heterogeneity is due to different types of sensors: One group of robots uses sonar sensors for
localization and the other robots are equipped with laser range-finders. The tests are carried out in the
environment shown in Figure 13. This environment is highly symmetric and only certain objects allow
the robots to reduce their position uncertainty. These objects can be detected either by sonar sensors or
by laser range-finders (see Figure 13 (a) and (b)). The position of these obstacles is chosen so that any
robot equipped with only one of the sensor types is not able to determine uniquely where it is. Whereas
robots using sonar sensors for localization cannot distinguish between three possible robot locations (see
Figure 13 (c)), robots equipped with laser range-finders remain uncertain about two possible locations (see
Figure 13 (d)).

As in the previous experiment, eight robots are placed in the environment and their task is to find
out where they are. Four of the robots are equipped with ultraasound sensors and the other four robots
use laser range-finders. The localization error for the different settings is plotted in Figure 14. Not
surprisingly, the error for single-robot localization decreases in the beginning of the experiments, but
remains at a significantly high level. The corresponding curves are depicted by the dashed lines (sonar
black, laser grey) in Figure 14. The results obtained when the robots are able to make use of detections
are presented as solid lines (sonar black, laser grey). As can be seen, both teams of robots benefit from
the additional information provided by the sensors of the other robots. As a result, each robot is able to
uniquely determine its position.

6 Related Work

Mobile robot localization has frequently been recognized as a key problem in robotics with significant
practical importance. A recent book by Borenstein, Everett, and Feng [5] provides an excellent overview
of the state-of-the-art in localization. Localization plays a key role in various successful mobile robot



architectures presented in [14, 25, 30, 44, 45, 50, 55, 57, 70] and various chapters in [40]. While some
localization approaches, such as those described in [31, 41, 62, 34] localize the robot relative to landmarks
in a topological map, our approach localizes the robot in a metric space, just like those methods proposed
in [2, 65, 68].

Almost all existing approaches address single-robot localization only. Moreover, the vast majority
of approaches is incapable of localizing a robot globally; instead, they are designed to track the robot’s
position by compensating small odometric errors. Thus, they differ from the approach described here in
that they require knowledge of the robot’s initial position; and they are not able to recover from global
localizing failures. Probably the most popular method for tracking a robot’s position is Kalman filter-
ing [28, 29, 46, 48, 59, 63], which represents uncertainty by the first and second moments of the density.
These approaches are unable to localize robots under global uncertainty—a problem which Engelson
called the “kidnapped robot problem” [19]. Recently, several researchers proposed Markov localization,
which enables robots to localize themselves under global uncertainty [9, 34, 51, 62, 39]. Global ap-
proaches have two important advantages over local ones: First, the initial location of the robot does not
have to be specified and, second, they provide an additional level of robustness, due to their ability to
recover from localization failures. Among the global approaches those using metric representations of
the space such as MCL and [9, 8, 39] can deal with a wider variety of environments than those methods
relying on topological maps. For example, they are not restricted to orthogonal environments containing
pre-defined features such as corridors, intersections and doors.

In addition, most existing approaches are restricted in the type of features that they consider. Many
approaches reviewed in [5] are limited in that they require modifications of the environment. Some require
artificial landmarks such as bar-code reflectors [20], reflecting tape, ultrasonic beacons, or visual patterns
that are easy to recognize, such as black rectangles with white dots [3]. Of course, modifying the envi-
ronment is not an option in many application domains. Some of the more advanced approaches use more
natural landmarks that do not require modifications of the environment. For example, the approaches of
Kortenkamp and Weymouth [41] and Matarić [47] use gateways, doors, walls, and other vertical objects to
determine the robot’s position. The Helpmate robot uses ceiling lights to position itself [36]. Dark/bright
regions and vertical edges are used in [13, 71], and hallways, openings and doors are used by the ap-
proaches described in [34, 61, 62]. Others have proposed methods for learning what feature to extract,
through a training phase in which the robot is told its location [27, 54, 65]. These are just a few repre-
sentative examples of many different features used for localization. Our approach differs from all these
approaches in that it does not extract predefined features from the sensor values. Instead, it directly pro-
cesses raw sensor data. Such an approach has two key advantages: First, it is more universally applicable
since fewer assumptions are made on the nature of the environment; and second, it can utilize all sensor
information, typically yielding more accurate results. Other approaches that process raw sensor data can
be found in [39, 28, 46].

The issue of cooperation between multiple mobile robots has gained increased interest in the past
(see [11, 1] for overviews). In this context most work on localization has focused on the question of how
to reduce the odometry error using a cooperative team of robots. Kurazume and Shigemi [43], for exam-
ple, divide the robots into two groups. At every point in time only one of the groups is allowed to move,
while the other group remains at its position. When a motion command has been executed, all robots
stop, perceive their relative position, and use this to reduce errors in odometry. While this method reduces
the odometry error of the whole team of robots it is not able to perform global localization; neither can
it recover from significant sensor errors. Rekleitis and colleagues [56] present a cooperative exploration
method for multiple robots, which also addresses localization. To reduce the odometry error, they use an



approach closely related to the one described in [43]. Here, too, only one robot is allowed to move at any
point in time, while the other robots observe the moving one. The stationary robots track the position of
the moving robot, thus providing more accurate position estimates than could be obtained with pure dead-
reckoning. Finally, in [4], a method is presented that relies on a compliant linkage of two mobile robots.
Special encoders on the linkage estimate the relative positions of the robots while they are in motion. The
author demonstrates that the dead-reckoning accuracy of the compliant linkage vehicle is substantially
improved. However, all these approaches only seek to reduce the odometry error. None of them incor-
porates environmental feedback into the estimation, and consequently they are unable to localize robots
relative to each other, or relative to their environments, from scratch. Even if the initial location of all
robots are known, they ultimately will get lost—but at a slower pace than a comparable single robot. The
problem addressed in this paper differs in that we are interested in collaborative localization in a global
frame of reference, not just reducing odometry error. In particular, our approach addresses cooperative
global localization in a known environment.

7 Conclusion

7.1 Summary

We have presented a statistical method for collaborative mobile robot localization. At its core, our ap-
proach uses probability density functions to represent the robots’ estimates as to where they are. To avoid
exponential complexity in the number of robots, a factorial representation is advocated where each robot
maintains its own, local belief function. A fast, universal sampling-based scheme is employed to approx-
imate beliefs. The probabilistic nature of our approach makes it possible that teams of robots perform
global localization, i.e., they can localize themselves from scratch without initial knowledge as to where
they are.

During localization, robots can detect each other. Here we use a combination of camera images and
laser range scans to determine another robot’s relative location. The “reliability” of the detection routine
is modeled by learning a parametric detection model from data, using the maximum likelihood estima-
tor. During localization, detections are used to introduce additional probabilistic constraints, that tie one
robot’s belief to another robot’s belief function. To combine sample sets generated at different robots
(each robot’s belief is represented by a separate sample set), our approach transforms detections into den-
sity trees, which approximate discrete sample sets by piecewise constant density functions. These trees
are then used to refine the weighting factors (importance factors) of other robots’ beliefs, thereby reducing
their uncertainty in response to the detection. As a result, our approach makes it possible to amortize data
collected at multiple platforms. This is particularly attractive for heterogeneous robot teams, where only
a small number of robots may be equipped with high-precision sensors.

Experimental results, carried out in real and simulated environments, demonstrate that our approach
can reduce the uncertainty in localization significantly, when compared to conventional single-robot local-
ization. In one of the experiments we showed that under certain conditions, successful localization is only
possible if teams of heterogeneous robots collaborate during localization. This experiment additionally
demonstrates that it is not necessary to equip each robot with a sensor suit needed for global localization.
In contrast, one can significantly decrease costs by spreading the different kinds of sensors among multi-
ple platforms, thereby generating a team of heterogeneous robots. Thus, when teams of robots are placed
in a known environment with unknown starting locations, our approach can yield significantly better lo-



calization results then conventional, single-robot localization—at lower sensor costs, approximate equal
computation costs, and relatively small communication overhead.

7.2 Limitations and Discussion

The current approach possesses several limitations that warrant future research.

Not seeing each other: In our current system, only “positive” detections are processed. Not seeing an-
other robot is also informative, even though not as informative as positive detections. Incorporating
such negative detections is generally possible in the context of our statistical framework (using the
inverse weighing scheme). However, such an extension would drastically increase the computa-
tional overhead, and it is unclear as to whether the effects on the localization accuracy justify the
additional computation and communication.

Identification of robots: Another limitation of the current approach arises from the fact that it must be
able to identify individual robots—hence they must be marked appropriately. Of course, simple
means such as bar-codes can provide the necessary, unique labels. However, because of the inherent
uncertainty of their sensors, mobile robots must be able to deal with situations in which they can
detect but not identify other robots. The factorial representation, however, cannot deal with mea-
surements such as “either robot A or robot B is straight in front of me.” In the worst case, this would
require to consider all possible combinations of robots and thus would scale exponentially in the
number of robots which is equivalent to computing distributions over the joint space of all robots.

Active localization: The collaboration described here is purely passive. The robots combine information
collected locally, but they do not change their course of action so as to aid localization. In [10, 22],
we proposed an algorithm for active localization based on information-theoretic principles, where a
single robot actively explores its environment so as to best localize itself. A desirable objective for
future research is the application of the same principle to coordinated multi-robot localization.

False-positive detections: As discussed in Section 4, our approach to robot detection has a false-positive
rate of 3.5%. This rate describes the chance of erroneously detecting a robot when there is none.
While a rate of 3.5% seems to be reasonably low, it turns out to cause major problems if the robots
see each other very rarely, which might happen in large environments. In this case, the ratio between
true-positive and false-positive detections can fall below one, which means that more than 50% of
all detections are false-positive. Our sample-based implementation of multi-robot localization is not
robust to such high failure-rates and we did not model false-positive detections in our experiments.
One way to handle such failures is to filter them out. First experiments based on the filter techniques
introduced in [23, 24] have shown very promising results and will be pursued in future work.

Delayed integration: Finally, the robots update their position instantly whenever they perceive another
robot. In situations in which both robots are highly uncertain at the time of the detection it might be
more appropriate to delay the update. For example, if one of the robots afterwards becomes more
certain by gathering further information about the environment or by being detected by another,
certain robot, then the synchronization result can be much better if it is done retrospectively. This,
however, requires that the robots keep track of their actions and measurements after detecting other
robots.



Despite these open research areas, our approach does provide a sound statistical basis for information
exchange during collaborative localization, and empirical results illustrate its appropriateness in practice.
These results suggest that robots acting as a team are superior to robots acting individually.
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