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Abstract — Methods for the localization of tracked wheel robots in
GPS-denied, unstructured environments, such as the ones encountered
in Search and Rescue scenarios, meet several challenges. In most
situations, one cannot rely on a planar ground, that would simplify
localization and mapping. This paper addresses an online 6D-SLAM
method for a tracked wheel robot, aiming at providing 6D pose
estimates of the robot. While the robot pose is represented by a 3D
position and a SO(3) orientation, the environment is mapped with
natural landmarks in 3D space, autonomously collected using visual
data from feature detectors. The observation model opportunistically
employs features detected from either monocular and stereo vision.
These features are represented using an inverse depth parametrization.
The motion model uses odometry readings from motor encoders,
together with orientation changes measured with an onboard IMU. A
dimensional-bounded EKF (DBEKF) is introduced here, that keeps
the dimension of the state bounded. A new landmark classifier using
a Temporal Difference Learning methodology is used to identify
undesired landmarks from the state. By forcing an upper bound to the
number of landmarks in the EKF state, the computational complexity
is reduced to up to a constant while not compromising its integrity.
A real dataset from RAPOSA-NG, a tracked wheel robot developed
for Search and Rescue missions, is used to experimentally validate
the approach. This dataset encompasses a closed circuit, including
stairs and non-planar ground segments.

Keywords: Simultaneous localisation and mapping, Ex-
tended Kalman filter, Feature detector, Inverse depth
parametrization, Landmark evaluation, Temporal difference
learning

I. INTRODUCTION

A common problem in Search and Rescue (SaR) scenarios
is the inspection by remotely operated robots of building’s
close to collapse . Inspection operations have to be performed
in a short amount of time, while collecting as much data as
possible. Geo-referencing the collected data is an important
feature that allow the SaR teams to better assess and plan
their activities. However, these environments are usually GPS-
denied, and thus alternative methods for localization are nec-
essary.

Since neither localization nor a map are available in these
scenarios, one possible approach is to use a Simultaneous
Localization And Mapping (SLAM) method. SLAM is one of
the most promising fields in robotics, aiming at tracking the

location of a robot and map its surroundings using external
sensor data. However, for SaR scenarios, the localization of
a robot cannot be assumed to be limited to a 2D position.
Instead, localization has to be framed as a full 6D problem
(3D for position plus a SO(3) attitude).

This paper addresses this problem, termed 6D-SLAM, using
an Extended Kalman Filter approach, together with visual
landmarks tracked in 3D space. The sensors employed are a
stereo camera pair, an Inertial Measurement Unit (IMU), and
odometry readings. The IMU provides incremental attitude
change readings, while odometry provides translational data
along the robot body. The stereo camera pair is used to
acquire both monocular and stereo features. On the one hand,
stereo features provide relative 3D positioning of the feature,
but stereo feature matching is prone to error, while on the
other, monocular features do not require matching, but do
not provide depth (requires parallax for depth to be indirectly
estimated). The proposed approach employs opportunistically
stereo or monocular features, depending on their availability.
The usage of stereo features also solves the problem of map
scale, common to most monocular SLAM techniques1.

EKF, when applied to SLAM, proves to work reasonably
well with distinct, well-matched observations and a small
state for estimation. However, insertion of new data over
time without removal increases EKF complexity, hindering
its scalability over time. By memory-bounding the state, EKF
complexity is assured to grow with time and, using proper
classifiers, undesired features are automatically removed. A
side effect from this removal procedure is that the map
becomes visually sparse, but as long as it suffices the SLAM
needs for stable predictions, one can use proper techniques to
acquire visually more compelling maps.

This work was implemented on RAPOSA-NG, a tracked
wheel robot for SaR missions (Figure 1). This robot has an
adjustable frontal body, where both the IMU and camera
are located. This robot was used to collect a dataset used
to validate the approach. This dataset consists in a closed
trajectory, including stairs, a ramp, and other obstacles, similar

1Assuming no a priori initialization of map scale.



to the ones found in the NIST reference scenario.
J.J. Leonard and H.F. Durrant-Whyte introduced Simul-

taneous Localization and Mapping (SLAM) terminology to
the robotics field and the concept of geometric beacons:
natural landmarks present in the environment that can be
reliably observed, as well as described in terms of a concise
geometric parametrization (referred in this paper simply as
landmarks) [1]. Geometric beacons can be acquired with many
different types of sensors, as long as the aforementioned
qualities are maintained.

Nüchter et al. proposed a 6D-SLAM method using laser
scan data [2]. The method relies on an EKF together with
the Iterative Closest Point algorithm for scan matching. This
method is capable of both localizing the robot and providing
3D reconstruction of the environment. However, it requires the
processing of a massive amount of data provided by the laser
scan data.

Civera and Davison proposed a real-time algorithm which
recovers the location of a monocular camera over time using
SLAM with a random walk motion model [3]. However,
feature initialization requires more than one observation, so
that a proper triangulation for an initial depth estimate can be
done. Also, it needs to acquire landmarks with known depth
for scale initialization. Thus, Civera and Davison presented an
inverse depth parametrization that represents landmarks uncer-
tainty with more accuracy than the standard XYZ parametriza-
tion [4]. The increase of accuracy can be justified by the
higher degree of linearity of the inverse depth parametrization
over XYZ parametrization. However, this representation over-
parametrizes each landmark (6 instead of the 3 components of
XYZ), increasing the EKF complexity even further. They also
defined a landmark classifier that removes 50% of all predicted
landmarks that should be visible but are not detected by any
feature detector. This approach leads to the landmark classifier
introduced in this paper. The usage of a random walk model
assumes a well behaved motion with smooth linear and angular
velocities over time, a condition that often fails for tracked
wheel robots in non-planar grounds (e.g., stair climbing).

Pinies et al. proposed the usage of an IMU for vision
SLAM with inverse depth parametrization [5]. In fact, having
orientation changes measured with an IMU, the uncertainty of
the camera location is reduced. However, it does not decrease
the uncertainty when only linear motion is observed, which
leads to the need of odometry inclusion presented in this
paper. As for the map scale problem, in order to solve it,
this paper extends the inverse depth parametrization usage for
stereo vision as well.

This paper is organized as follows: Section II describes the
state representation as well as the observation and motion
model used during EKF. Section III introduces a landmark
classifier that proves to be effective to measure each landmark
contribution to the state. This classifier will then be applied to
the EKF in order to memory-bound the state and upper limit
the EKF complexity. Section IV shows experimental results in
realistic environments using RAPOSA-NG, while Section V
concludes the paper.
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Fig. 1. Body, IMU and Camera frames are chosen depending on the robot
configuration.

II. STATE AND MODEL DEFINITIONS

We address the problem of simultaneously estimating the
robot pose and landmark positions (SLAM) using a proba-
bilistic approach based on the Extended Kalman Filter. The
state of this filter encompasses both the robot pose and the
landmark positions. The motion model is used in the predict
step, while the observation model is used in the update step,
as usual [1].

A. State Representation

The SLAM algorithm estimates the pose of the camera
frame with respect to a world frame. The camera frame is
considered to be located at the midpoint between the two
stereo cameras (Figures 1 and 2).

The EKF state is defined as,

st =
(
r>t q>t y1

> · · · yn>
)>
, (1)

where vector rt and unit quaternion qt represent the camera
position and attitude (i.e., pose of the camera frame) in the
world frame at time t. All yi from i ∈ {0, . . . , n} correspond
to 3D point landmarks represented using an inverse depth
parametrization,

yi = (Xo
i Y

o
i Z

o
i θi φi pi)

> (2)

where oi = (Xo
i , Y

o
i , Z

o
i )
> is an arbitrary point in XYZ, θi

and φi are the azimuth and elevation of the semi-ray that
crosses both this point and the landmark in the world frame,
and pi is the inverse of the distance between oi and the
landmark. From this azimuth and elevation one can obtain
a unit vector m in the world frame; thus landmark yi can be
expressed as

yi = oi +
1

pi
m. (3)

This parametrization (see Figure 2) is capable of representing
any landmark in space. Usually, the arbitrary point corresponds
to the focal point of the camera when the landmark was
first observed. While this parametrization has more degrees
of freedom than necessary (6 instead of 3), it has interesting
properties regarding linearity over EKF [4].

Three different frames are defined for the robot for each
iteration t. Figure 1 shows the locations of these frames.

1) Camera frame, representing the camera pose at itera-
tion t, as defined above;



Fig. 2. Observation Model for a landmark yi. Left: landmark yi is
parametrized by an arbitrary point oi in the space, together with a unit vector
m and a depth di; this unit vector is described by an azimuth and elevation
angles. The observation model consists of the directional vector hC

it
defined

from the camera frame to the landmark. Right: the vector hC
it

is then used to
obtain the projection point zit in the camera plane, which is then converted
to a pixel position (u, v).

2) Body frame, representing the robot body pose at itera-
tion t. In RAPOSA-NG, the transformation between this
frame and the previous one depends solely on the angle
of the frontal body of the robot;

3) IMU frame, representing the IMU pose at instant t. The
angular velocity ωimu can be modelled through the IMU
gyroscopes. In RAPOSA-NG, this frame is attached to
the frontal body.

B. Observation Model

The observation model describes how each feature is per-
ceived by the sensors. It is used in the EKF to update the
state estimate according to sensor data. Each feature can
be perceived in either stereo by both cameras, or mono by
only one of the cameras. In any case, the observation model
provides the expected pixel position of each feature, for each
one of the cameras. This computation assumes both cameras
share a common image plane and is performed in two steps:

1) For each landmark yi in state, compute a directional
vector hCit in the camera frame that points from the
camera position to the landmark position (Figure 2, left);

2) Using the Pinhole Camera Model, for each landmark
yi situated in front of the camera, project the landmark
position along the directional vector hCit to the common
image plane in order to get the expected pixel position
(u, v) (Figure 2, right). From (u, v) and knowing the
baseline of the stereo camera, compute the expected
pixel position relative to each camera.

Note that this model is common to both monocular and stereo
feature detection.

The pinhole model assumes a single camera with no lenses,
nor aperture radius. It does not model any type of image
distortion or blur present in every camera. For this paper,
information retrieved for observation analysis passed through a
correction process using camera’s proprietary software2 before
being used by the EKF, returning an undistorted image with

2Triclops library from PointGrey.

known intrinsic parameters, while maintaining a wide visual
range. This software also rectifies each pair of stereo images,
by projecting them to a common image plane [6]. If no
software correction is available, distortion can be compensated
with proper models using distortion parameters intrinsic to the
camera, retrieved through calibration methods.

An horizontal stereo camera is used in this paper to acquire
image data from two different sources. Since all images are
properly rectified, a given pair of features from both cameras
only correspond to the same landmark if they both share the
same horizontal axis. This rectification also results in a pair
of images with the same size and intrinsic parameters.

C. Motion Model

The motion model employs the odometry readings to esti-
mate linear movement along the body frame and IMU readings
to estimate incremental rotations of the robot. In RAPOSA-
NG the IMU is mounted on the frontal body, and thus the
IMU frame sharing the same attitude as the camera frame.

From odometry the robot obtains linear movement along the
body frame, by averaging the velocity of both tracks. Differen-
tial movement is discarded, since tracked wheel robots provide
unreliable angular movement measurements from odometry.
From the IMU, the robot obtains attitude changes. These
changes are modeled as an angular velocity ωimu, defined
by

ωimut = ωgyrot + ωbiast + ωεt , (4)

where ωgyrot is the angular velocity retrieved from the IMU,
ωbiast is the bias error normally associated with most IMUs (if
the IMU uses optical or MEMS technology and is calibrated,
it can be assumed no ωbiast for some period of time [7]) and
ωεt is a normally distributed error with zero-mean. From ωimu

one can obtain an incremental rotation qimut using a zeroth-
order integrator as described in [8].

The frame transformations among the frames defined in
section II-A propagate these movement measurements, as well
as their uncertainties (as covariances), to the camera frame.

D. Feature Initialization

Over time, visual observations are made and new landmarks
are inserted into the state from observed visual features. Many
criteria can be used to establish when new landmarks should
be inserted and how many. For instance, one can add a new
landmark every time a visual feature is observed that does
not match any landmark in the state. However, doing so is
computationally ineffective as it fills the state in a short time
if no landmark removal procedure is performed.

Assuming the usage of the stereo camera, one can acquire
monocular features either from the left or from the right
camera. Also, some features acquired from both cameras
correspond to the same landmark, resulting in a stereo feature.
Depending on whether the new landmark in the state results
from a monocular feature or from a stereo feature, two
different initializations are introduced:

1) From a monocular observation: If a new landmark
yn+1 is to be inserted into the state from a feature



detected by only one of the cameras, first a directional
vector for the respective camera frame is computed using
the Pinhole Camera Model. The oi = (Xo

i , Y
o
i , Z

o
i )
> is

set to the respective camera center, and θi and φi are set
to the azimuth and elevation of the semi-ray that crosses
this point and the feature location in image plane.
It is impossible to gain depth information from just
one observation, thus an initial arbitrary value pinitial
serves as an initial estimation for the inverse depth
given enough uncertainty. This parametrization is ap-
proximately linear along the corresponding semi-ray,
allowing the EKF to sustain and correct large errors for
the depth estimation.

2) From a stereo observation: Using epipolar geometry,
one can compute the landmark parameters for the inverse
depth parametrization, but including a measured depth,
rather than a default value. The oi is set to the camera
frame origin, θi and φi are set to the azimuth and
elevation of the semi-ray that crosses the camera frame
and the landmark XYZ position extracted from stereo.

III. DIMENSIONAL-BOUNDED EKF (DBEKF)

One of the major problems regarding the Extended Kalman
Filter is the fact that its computational complexity increases
over a quadratic order with the number of landmarks. Since the
state is represented by the camera pose and set of landmarks
representing a map. The number of entries in the state vector st
is 7 + 6nl where nl corresponds to the number of landmarks
in the state. It has near double the number of entries when
compared to all landmarks represented in XYZ coordinates. It
is suggested by Civera et al [4] to convert a landmark inverse
depth parametrization to XYZ in the state when the error
covariance is low, but it does not interfere with the squared
growth in the computational complexity of EKF.

By upper limiting the number of landmarks in the state,
EKFs computational complexity becomes upper bounded.
However, only upper limiting without any criterion to remove
old landmarks prevents the EKF filter to acquire new features.
As such, new landmarks are only added when needed and
those state landmarks that are not contributing to reduce
uncertainty should be removed. Since in practice, it is very
difficult (although possible) to process loop closure with visual
data retrieved from feature detectors when revisited in a
different perspective, it is of no priority to keep old landmarks
in state. However, the SLAM does not have to eliminate any
landmarks unless it is needed, and a criterion for when new
landmarks are needed must be defined as well.

This paper introduces a Dimensional-Bounded Extended
Kalman Filter (DBEKF) which equips EKF with criteria for
landmarks insertion and removal. Figure 3 shows a flowchart
of the algorithm. Depending on the available data, the predict
and/or update steps of the EKF are performed, as usual. Then,
it is evaluated whether to remove and/or add new features,
according to a criteria defined below. For that, a Landmark
Classifier has to be introduced first.

Predict

Update

New odometry and 
IMU readings?

New image with 
visual features?

Landmarks to
be removed?

New landmarks to
be added?

Remove
Landmarks

Landmark
insertion

Start

yes

yes

yes

yes

no

no

no

State 
Initialization

no

Fig. 3. Flowchart of the DBEKF algorithm.

A. Landmark Classifier

For the DBEKF, a landmark yi is said to be visible in state
st, yi ∈ Vst , if it is within the field of view of the camera
from state st. Also, yi is detected at iteration t, yi ∈ Dt, if the
feature detector points out a corresponding feature. In a perfect
scenario without any physical occlusions, Vst = Dt, that is, if
the landmark is visible it should be detected. However, feature
detectors are prone to error: descriptors can fail to point out
some correspondences and miss features from being detected.
These inaccuracies are crucial to classify each landmark’s
usability in the state. Since it is assumed that no landmarks
have physical occlusions, a visible but not detected landmark
can only represent a failed match3. In these cases, failed
matches promote the corresponding landmark to be removed
from the state.

A Temporal Difference Learning approach is used to predict
a measure of the utility, uit, of each landmark at iteration t:

uit =

{
Guit−1 + (1−G)1iDt

if yi ∈ Vst

uit−1 otherwise.
(5)

where G is a arbitrary weight set by the user and the indicator
function (G ∈ [0, 1]), 1iDst

, is defined for detectability,

1iDst
=

{
1 if yi ∈ Dst

0 else
. (6)

The lower the utility of a landmark, more likely it is to be
removed from the state. The initial value for utility is ui0 = 1.
Due to (5) and (6), uit ∈ [0, 1].

Regarding the weight G, it represents the influence at
iteration t of 1iDst

over uit. The lower G is, higher the
influence. If G = 0, the utility at iteration t assumes the same
value as 1iDst

. If G = 1, the utility stays equal to the initial
value ui0, having no influence from 1iDst

.

3In the sense of matching between features from the camera and features
stored in landmarks. Note to confuse with the stereo matching among the two
cameras.



B. Landmark Removal

The landmark removal procedure is composed of three
criteria:

1) Utility Threshold: when uit reaches a value below
a threshold Tl ∈ [0, 1] at iteration t, landmark i is
discarded from the state;

2) Negative Inverse Depth: all features with negative
inverse depth (e.g., due to a feature mismatch) are
automatically discarded from the state;

3) Emergency Removal: if the amount of matched land-
marks ml is below a threshold Te, the Ne oldest land-
marks are removed from the state, where

Ne = Te −ml. (7)

C. New Landmark Insertion

As of new landmark insertion, the only criterion is to add
nnl new landmarks to the state

nnl = min(Ml − nl, nfeat), (8)

where Ml is the maximum number of landmarks imposed by
the user to the DBEKF, nl is the current number of landmarks
in the state and nfeat is the number of features without
landmark correspondence given an observation at iteration t.

IV. RESULTS

All experimental results presented in this paper are from
a single dataset made with RAPOSA-NG. The dataset is the
result of a ROS4 log file recording during operation. It contains
odometry readings from left track, right track and inclination
arm position at 15Hz each, angular velocity readings from
IMU at 30Hz, rectified images from both cameras at 15Hz,
and all features retrieved from image readings using feature
detector ORB at 15Hz. Unless otherwise stated, all tests
performed with DBEKF have an upper bound of Ml = 80
landmarks in the state, an utility weight factor of G = 0.8,
an utility threshold of T = 0.01 and a minimal number
of matched landmarks per observation of ml = 10. Results
slightly vary for different runs, since the log file is played in
real time and new landmarks are chosen randomly.

For the experimental results, RAPOSA-NG performs a near-
rectangular trip of 4.7 × 5.5 meters in a soccer field with
obstacles, as shown in Figure 4. During the experiment,
RAPOSA-NG climbs up a set of stairs with 0.62 meters of
height and goes back to the floor from two ramps. Two sideway
inclinations are also present, where RAPOSA-NG rolls when
travelling over them.

Figure 5 presents a qualitative evaluation of the trajectories
estimated by DBEKF, in comparison with using odometry
alone. Three configurations are evaluated:

1) using all features as monocular features, thus being
equivalent to monocular SLAM;

2) using only stereo features, where features observations
are made in 3D; note however that all features not stereo
matched are ignored;

4http://www.ros.org

Fig. 4. Scenario used for experimental results. The indicated line represents
the trajectory travelled by RAPOSA-NG during the experiment. The starting
point is marked with black/yellow strips, and the path proceeds clockwise
(with respect to the top view).

3) using both mono and stereo features opportunistically,
as proposed in this paper.

In all cases, the algorithm was capable of correcting the errors
induced by odometry, up to a point, being able to return to the
initial position (note also that no closure detection algorithm
was employed). The high landmark covariances observed in
both configurations 1 and 3 are due to the monocular feature
initialization and update, that induces a high uncertainty on
landmark depth. Depth uncertainty is much smaller in both
configuration 2 and in the subset of stereo features in config-
uration 3.

A quantitative comparison between the above three config-
urations was made. The performance metric chosen was the
trace of position estimation covariance matrix (the correspond-
ing 3 × 3 submatrix of the state covariance). Recall that the
trace of a square matrix equals the sum of its eigenvalues. In
the case of a covariance matrix, its eigenvalues correspond to
the variances along the principal axes. Since the results vary
slightly over different runs over the log file, quantitative results
were collected over several runs. An amount of 10 runs were
used to obtain average and standard deviation values for the
performance metric. The results are shown in Figure 6. These
results shows that the combination of mono and stereo features
in configuration 3 outperform the other two configurations.
This provides empirical support to the advantages of the
proposed approach.

V. CONCLUSIONS

This paper presented a localization method for a tracked
wheel robot, targeting unstructured, GPS-denied environments,
using vision as a primary sensor, together with odometry and
IMU readings. The usage of both cameras as stereo vision
decreases the uncertainty from all landmarks and allows a
better initialization for the SLAM algorithm, but the lack
of stereo features may offer some problems to the SLAM
problem if no other type of observations are used. In this
paper a method for the usage of both stereo and monocular
features as observations is proposed. The more stereo features
are available, the lower the localization uncertainty will be.
Moreover, the presence of stereo features solves the map scale
problem (referred in Section I). From the presented results, it
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Fig. 5. Experimental results using DBEKF with mono-only (top), stereo-
only (middle) and stereo plus mono solution (bottom). These correspond to
configurations 1, 2, and 3 as described in the main text. The trajectories shown
are: in cyan/grey is the camera trajectory with only odometry and IMU, while
the black one used SLAM estimation. Covariance for the final position is also
shown (in violet), as well as the final covariances of the landmarks in the state
(in yellow).

is clear that using both monocular and stereo observations in
the way introduced here increases the overall quality of SLAM
over monocular only or stereo only observations. Experimental
results have shown that the proposed method outperforms the
exclusive usage of either monocular or stereo features.

Although the EKF has been extensively used to solve
the SLAM problem, its computational complexity grows un-
bounded with the number of landmarks. This paper showed
that, with DBEKF, one can achieve good estimations with
constant complexity when removing landmarks from state
according to a utility evaluation criterion.

Some open challenges that can be addressed in future work
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better) using DBEKF along time. The different traces correspond to the use
of mono features only, of stereo features only, and of all features. The values
are averages of the metric over 10 runs, together with standard deviances as
error bars.

include the usage of sub-mapping techniques to store old
features, instead of removing them from the state. This allows
keeping all features encountered so far, without compromising
the DBEKF performance. Older features could also be used
to explicitly address the loop closure problem.
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