
From Bio-Inspired to Institutional-Inspired Collective Robotics

PTDC/EEA-CRO/104658/2008

Second milestone report

Danesh Tarapore, José Nuno Pereira, Porfirio Silva,

Anders Lyhne Christensen, Jorge Carneiro and Pedro Lima

28 February 2012

Contents

1 Introduction 1

1.1 Challenges . 1

1.2 Approach . 2

1.2.1 Bio-inspired approach . 2

1.2.2 Institutional inspired approach 3

1.2.3 Mathematical models . 4

1.3 Outline . 5

2 Multi-cellular systems and inspiration for roboticists (Task 4 and 5) 7

2.1 Introduction . 7

2.2 Stochastic simulation of Th cell collective 8

2.2.1 Simulation environment . 8

2.2.2 Antigen dose dependent Th cell differentiation 8

2.2.3 Results . 9

2.2.4 Summary and outlook . 10

2.3 Transitioning from cells to robots . 12

2.3.1 Crossregulation model . 12

2.3.2 Simulation environment . 16

2.3.3 Statistical analysis and numerical integration 16

2.3.4 Results . 18

2.3.5 Summary and outlook . 18

2.4 Mathematical models . 21

3 Institutional inspired robotics (Task 5) 23

3.1 Social dilemma scenario . 23

3.2 Reinforcement learning in institutional robotics 26

3.3 Implementation of decentralised and institutional approaches . . . 28

iii

3.3.1 Defining the system . 28

3.3.2 Implementation of decentralised decision making 30

3.3.3 Implementation of institution based decision making 31

3.4 Conclusions and future work . 32

4 Modelling institutions with Petri net formalism (Task 6) 35

4.1 Introduction . 35

4.2 Institutional Robotics Models . 36

4.2.1 Institutional Agent Controller 36

4.2.2 Modeling with Institutional Controllers 39

4.3 Summary and Future Work . 42

A Binomial heap implementation for fast multi-cellular stochastic simula-

tion 45

A.1 Stochastic simulation algorithm . 45

A.2 Binomial tree . 46

A.3 Binomial heap . 47

A.3.1 Binomial heap representation 48

A.3.2 Operations performed on binomial heaps 48

B Parameters for multi-cellular stochastic simulation 57

C Pseudo-code of decentralized and institution implementation 61

Bibliography 67

iv

Chapter 1

Introduction

The project “From Bio-Inspired to Institutional-Inspired Collective Robotics”, aims

to investigate and formalise laws that govern large-scale collective systems in or-

der to synthesise systems consisting of relatively simple robots that display com-

plex behaviour through local interactions. In order to achieve this endeavour, we

have focused on both biological and social systems. From biology, we model a

multi-cellular system, namely the T helper cells of the adaptive immune system.

While from sociology, we have focused on institutional economics. Our objective

is to bring together theories, ideas and inspiration from institutional economics

and cell biology under a common formal framework for large robot populations

modelling and analysis.

1.1 Challenges

The field of collective robotics has made rapid progress since its advent in the

1980s, with groups of robots being made to do a wide variety of tasks ranging

from foraging and nest-construction (e.g. (Waibel et al., 2009; Parker et al., 2003)),

to self-organisation and exploration (e.g. (Hauert et al., 2009; O’Grady et al., 2010;

Stirling et al., 2010)). However despite these efforts, the existing task scenarios

are largely limited to toy problems with few robots, and in carefully controlled

laboratory environments. In dealing with large-scale robot collectives, a direct

approach in programming individual robots may be insufficient. This is because

it is difficult to predict beforehand the nature of the interactions between robots,

and their effect on the collective task. Automated, self optimisation approaches

have been widely used to avoid this problem (e.g. artificial evolution, (Waibel

1

et al., 2009) and machine learning (Panait and Luke, 2005)). However, the results

of these methods are difficult to analyse. Additionally, when dealing with large

number of robots in a group, optimisation techniques are prohibitively expensive

in computation.

The process of developing controllers for individual robots (micro-level) needs

to be supported with models to design and robustly predict state of system (macro-

level). Models allow designers of multi-robot systems to capture fundamental

dynamics of these nonlinear, asynchronous, large-scale systems at more abstract

levels, possibly achieving mathematical tractability. Modelling is also a means

for enabling generalisation to different robotic platforms and estimating optimal

system parameters, including control parameters. Furthermore, by developing

models of the system, we can verify macro-level properties like stability, robust-

ness, adaption and innovation.

A multi-level probabilistic modelling methodology for distributed robotic sys-

tems was proposed in (Martinoli et al., 2004). This methodology also takes into

account the design of controllers for robots. Being a bottom-up approach, it starts

by considering a real implementation of the system (or faithful simulations) and

then builds up a series of increasingly abstract models, carefully validating each

against those at lower abstraction levels. The methodology has been applied suc-

cessfully to a large variety of distributed robotic systems (Winfield et al., 2008;

Mermoud et al., 2010; Correll and Martinoli, 2011).

However, in some cases, this approach yields macroscopic models that are

difficult to analyse mathematically (e.g., non-linear, time-delayed systems of dif-

ferential or difference equations, sometimes partial). Being primarily designed

for swarm robotics systems, the methodology might not be able to deal with the

higher behavioural complexity we envision for institutional robotics applications.

While design of an individual controller is still feasible using, for instance, a Fi-

nite State Machine (FSM) approach, modelling different behaviours encapsulated

in one controller using this approach might lead to state explosion and a pro-

hibitively large model.

2

1.2 Approach

1.2.1 Bio-inspired approach

The adaptive immune response is orchestrated by helper T (Th) lymphocytes that

take critical collective decisions based on local information alone. These decisions

are critical since they can imply either fighting or accepting invading microorgan-

isms; engaging or not in autoimmune pathologies. The cells as a population dy-

namically regulate and differentiate themselves into different sub-lineages (e.g.

Th1, Th2, Th17, and Treg cells) (Harrington et al., 2005; Hori et al., 2003; Park

et al., 2005; Mosmann and Coffman, 1989) to initiate the appropriate immune

response. Importantly, the differentiation of naive Th cells into the different func-

tionally distinct sub-types is decentralised, based solely on the state of the cell

and local information available to it.

Considerable research has been done on the genetic regulatory networks (GRN)

controlling individual T helper cell differentiation (Naldi et al., 2010; Garg et al.,

2009; Mendoza, 2006; Garg et al., 2007). However, an important consideration of

most of these models is that an individual Th cell is analysed independent of its

environment. Consequently, interesting properties of the cell population may not

be characterised with such models. To this end, we have developed a detailed

stochastic simulator of the Th cell collective, simulating the molecular reactions

of each Th cell (guided by their GRN), interactions between cells, and population

growth (Tarapore and Carneiro, 2010). The detailed nature of our simulator, cou-

pled with the striking resemblance between cells and robots, allows the simulator

to be used as a test bed for theoretical models of collective systems. Consequently,

not only can the models be greatly improved to better design robot collectives,

but they may also help in enriching the theory of immune response.

A fundamental difference between cells and robots, that hinders the direct us-

age of immune system inspired algorithms for collective robotics, is that robots

cannot proliferate (except some modular robotic systems in which composite en-

tities may replicate when sufficient individual units are available (Zykov et al.,

2005)). In our approach, we also address this problem and suggest possible alter-

native to cell proliferation. Furthermore, we show analytically and with stochas-

tic simulations, the properties of the system are retained.

3

1.2.2 Institutional inspired approach

In institutional robotics the agents are seen in a somewhat different light. While

in population of cells, an individual agent is very reactive, following a simple set

of rules at the local level, in human societies an agent is more deliberative, their

behaviour being harder to capture. Institutional Robotics aims to consider agents

as more complex then reactive agents, by considering that through cooperative

decision-making processes, agents can actually modify the rules that guide their

behaviour. Coordination between agents is achieved by this self-regulation of so-

cial interactions since the robots know not only how to behave in a given scenario

but also what to expect from other robots and the environment.

According to the IR approach:

1. the coordination system is a network of institutions;

2. institutions are coordination artifacts of different types (organisations, teams,

hierarchies, conventions, norms, social roles, behavioural routines, stereo-

typed ways of sensing and interpret certain situations, material devices and

particular organisations of the physical world), that may be implemented

as material objects and/or mental constructs;

3. robots are able to modify, at some extent, the material Organization of its

physic environment (and so modify the material basis of the institutions);

4. robots are able to deliberately modify the institutional environment: “in-

stitutional imagination” (“thought experiences” about possible outcomes

of modifying current institutions) and “institutional building” (collective

decision-making processes to modify “constitutional rules” of current insti-

tutions) are mechanisms to do so;

5. there are non-deliberate means of institutional evolution: institutions can

be modified by accumulating small modifications initiated by some robots

and not opposed by others; item robots with institutional building capabil-

ities need a high degree of autonomy, being able to pursue their own goals

grounded on their “struggle for survival” (some form of homoeostasis for

artificial agents).

Summarising, from an institutional perspective, institutions are taken as the

main tool of any sophisticated society, and individuals are both constructive within

4

and constructed through institutional environments. With this heuristic, the in-

stitutional approach to multi-robot systems may provide appropriate conceptual

means to the current methodological needs of designing complex coordination

algorithms for distributed robotic systems.

1.2.3 Mathematical models

The mathematical model (see Chapter 2) may not scale up to more complex sys-

tems involving a higher number of micro-level states, the possibility of adding

new states, and scenarios with more complex (heterogeneous) environments. In

such cases, as (i) detailed multi-cellular stochastic simulations, or (ii) realistic col-

lective robotic scenarios, e.g., the novelty detection case discussed earlier, another

mathematical formalism is needed. A stochastic petri net formalism (bottom-up

approach) is presented (see Chapter 4), that may be more adequate to scale up

with more complex simulations.

With the resulting model, stability can be studied by analysing the impact

of eliminating state transitions corresponding to communication among collec-

tive members. Modelling and analysing short-term adaptations refer to envi-

ronment parameter modifications over time, which can be learnt, e.g., through

reinforcement learning. Innovation implies changing the structure of the PN or

SHA modelling the collective behaviour and analysing the impact of such drastic

modifications. Robustness is tested by adding or removing sub-PN or sub-SHA

corresponding to models of sub-group roles and re-computing the full robot- col-

lective/environment closed loop model.

The information about the state of a given system being modelled is dis-

tributed by the set of places of a PN. Considering the multi-level modelling method-

ology described previously, this property of PNs may allow for building models

for complex tasks with the risk of state explosion. If behaviours can be abstracted

into places, then concurrent execution of behaviours is easily represented with

PNs. Also by using PNs to model our systems we can take advantage of its struc-

tures being common to those of Generalised Stochastic Petri Nets (GSPN). If some

properties are verified, the marking process of GSPN models is equivalent to a

continuous time Markov chain. Thus we can, for instance, perform steady state

analysis on it, as well as other types of analysis.

5

1.3 Outline

In chapter 2 of this report, we discuss our detailed stochastic simulator of Th cell

collective, and the immunology experiments conducted to calibrate the parame-

ters of the system. In addition, we highlight an important difference between cells

and robots, that may hinder the efforts of immunology-inspired roboticists, and

describe potential solutions to the problem. Chapter 3 describes a social dilemma

scenario which would allow us to explore institutions in designing collective

robotic systems. In addition, experiments are presented to better understand the

use of institutional devices and its effect on the sustainability of a group of robots.

Furthermore, in chapter 4 we present our formalism of institutions in the institu-

tional robotics framework. We apply this formalism to a case study and build of

model for the considered distributed robotic system using the robotic controller

obtained from the institutions as a starting point.

6

Chapter 2

Multi-cellular systems and

inspiration for roboticists

(Task 4 and 5)

2.1 Introduction

The cells of the adaptive immune system (namely T helper cell lineage) has been

extremely successful during the course of evolution as evidenced by its presence

in all jawed vertebrate species. Central to their success is the important role they

play in establishing and maximising the capabilities of the immune system. The

Th cells as a population is capable of dynamically regulating and differentiating

themselves into different sub-lineages (e.g. Th1, Th2, Th17, and Treg cells) (Har-

rington et al., 2005; Hori et al., 2003; Park et al., 2005; Mosmann and Coffman,

1989) to initiate the appropriate immune response. Importantly, the differentia-

tion of naive Th cells into the different functionally distinct sub-types is decen-

tralised, based solely on the state of the cell and local information available to

it.

Progress in modern systems biology has resulted in considerable research

on the genetic regulatory networks (GRN) controlling individual T helper cells

(Naldi et al., 2010; Garg et al., 2009; Mendoza, 2006; Garg et al., 2007). However,

an important consideration of most of these models is that an individual Th cell

is analysed independent of its environment. Consequently, interesting properties

of the cell population may not be characterised with such models. To this end, we

developed a detailed stochastic simulator of the Th cell collective, simulating the

7

molecular reactions of each Th cell (guided by their GRN), interactions between

cells, and population growth (Tarapore and Carneiro, 2010).

The detailed nature of our simulator, coupled with the striking resemblance

between cells and robots, allows the simulator to be used as a test bed for the-

oretical models of collective systems. Consequently, not only can the models be

greatly improved to better design robot collectives, but they may also help in

enriching the theory of immune response. In this chapter, we outline a classical

immunology experiment simulated to calibrate the parameters of our stochastic

simulator (Section 2.2). We further highlight an important different between cells

and robots, that may hinder the efforts of immunology-inspired roboticists, and

describe potential solutions to the problem (Section 2.3).

2.2 Stochastic simulation of Th cell collective

2.2.1 Simulation environment

A stochastic simulator of discrete events of multiple scales was developed un-

der the scope of Task 1 of this project (Tarapore and Carneiro, 2010). Diverse

repertoire of events were simulated namely, (i) molecular reaction events within

a cell (Naldi et al., 2010), (ii) events leading to changes in population size, and

(iii) juxtacrine and paracrine interactions between cells. The discrete event simu-

lation of such a large and dynamically varying set of events was computationally

expensive. Consequently, the priority queue at the heart of the our simulation

was optimised with an implementation of a Binomial Heap data structure (Ap-

pendix A).

2.2.2 Antigen dose dependent Th cell differentiation

Our detailed stochastic simulation of the Th cell collective involves a large num-

ber of parameters (Appendix B). The calibration of the parameter values was

performed by repeating certain classical immunology experiments.

The dosage of a foreign antigen can elicit a cell-mediated or humoral type of

immune response. In this section, we describe an experiment that was simulated

to compare with the empirical data, the number of Th cells belonging to differ-

ent differentiation lineages (Th1 and Th2), under treatments with varying anti-

gen doses (Hosken et al., 1995). The experiment demonstrated that the antigen

8

dose used in primary cultures could directly influence Th phenotype develop-

ment from naive Th cells (Th0 lineage), stimulated with dendritic cells or acti-

vated B cells as the antigen presenting cells.

Experiment protocol

An the start of the simulation, no external cytokines were added to the medium.

The Th cells were activated in separate treatments with varying does of antigen

presenting cells, with values ranging from 50 to 16000 cells, with 20 binding sites

associated with each cell. In each treatment, the seed population of Th cells con-

sisted of 700 Th0 cells, and 300 Th2 cells.

The population was simulated for a total period of 6 days. At the end of

day 3, new antigen presenting cells were added to the population, equal to the

number of APCs at the start of the simulation. This was particularly necessary in

treatments with low APC doses. Following the completion of the simulation, the

total number Th cells, and their lineages were recorded.

To compare the number of cells of each lineage (Th0, Th1 and Th2), we aver-

aged for each treatment, the number of cells over 10 independent replicates, at

the end of day 6 of the simulation.

2.2.3 Results

After 6 days of stimulating the Th cells with Antigen presenting cells, there was

considerable variation in the number of cells recovered among the 10 treatments.

At the lowest APC dosage (20), 1732 cells were recovered. By contrast, at the

highest dosage (16000), the population consisted of 10943 cells. In addition, the

level of paracrine cytokine IL-2, also varied amongst treatments. At the end of

24 hours, 87.3 units was found at doses of 20 APCs. In populations consisting of

16000 APCs, the level of IL-2 in the medium was much higher at 280.3 units.

The number of Th cells of different lineages in the recovered populations was

influenced by the APC dosage (see Fig. 2.1). A predominance of Th2 cells was

observed at low doses of APCs (50 to 500). Medium doses of APCs (1000 to 2000)

resulted in a higher density of Th1 cells in the population. However, a further

increase in APC dosage (4000 to 16000) resulted in a higher proportion of Th2

cells again, and a decrease in Th1 cells. Furthermore, increase in APC dosage

resulted in a decrement in the number of undifferentiated Th0 cells recovered

9

Figure 2.1: Mean number of Th0 (red), Th1 (green) and Th2 (blue) cells at the end

of day 6, for different doses of Antigen presenting cells. In all treatments, the seed

population consisted of 30% Th2 cells (dotted line).

(Fig. 2.1).

2.2.4 Summary and outlook

In our simulations, we investigated how variation in antigen dose (due to vari-

ation in the number of antigen presenting cells) influenced Th cell phenotype

development. Our simulations revealed the predominant presence of Th2 cells

with low and high antigen doses. By contrast, at medium doses, a high concen-

tration of Th1 cells was observed in the population. These results are qualitatively

similar to empirical data (Hosken et al., 1995).

In addition to experiment described above, we are simulating other classical

immunology experiments (Murphy et al., 1996) to better calibrate the system pa-

rameters. We are also in the process of better understanding the dynamics of

immune response while perturbing the system, such as rewiring the GRN in-

side some/all cells, changing the parameters of the cell-to-cell interactions, and

adding or killing cells.

The detailed nature of our simulations of Th cell collectives, allows them to

bear a striking resemblance to a robot collective. For example, communication

10

is simulated on contact (cell conjugation), at medium range (juxtacrine cytokine)

and at long range (paracrine cytokine). Consequently, our simulator can be used

as a test bed to evaluate detailed mathematical models of a collective. This would

serve a dual purpose, (i) an improved theory of immune response, and (ii) allow

roboticists to evaluate, test and improve these mathematical models, which can

then be utilised to design better robot collectives. However, an important differ-

ence between cells and robots is that cells can proliferate, while robots can not. In

the next section, we address this issue and suggest a possible replacement for cell

proliferation, while retaining the decentralised and self-organising nature of the

adaptive immune system.

11

2.3 Transitioning from cells to robots

The adaptive immune system is characterised by its ability to differentiate be-

tween self and non-self antigens. The system is able to rapidly deploy a response

to antigens that are foreign to the host, while continually tolerating antigens that

are part of the self. Roboticists would like to emulate this property in their col-

lective. Cell proliferation (division of a single cell into two daughter cells) is the

fundamental mechanisms used by the adaptive immune system to orchestrate

these responses. However, a fundamental difference between cells and robots

is that robots cannot proliferate (except some modular robotic systems in which

composite entities may replicate when sufficient individual units are available

(Zykov et al., 2005)). In this study, we therefore, evaluate if and when recruitment

can be used to emulate the process of cell proliferation. Proliferation is simulated

by the transfer of a controller from a “proliferating” robot to a “free” one. In order

to determine if and when recruitment can be used to emulate proliferation with

reasonably accuracy, we compare two system: one that relies on proliferation and

one that relies on recruitment,respectively. We model both systems analytically

and we implement them in a stochastic simulation environment.

The mechanisms underlying the tolerant and immune response of the adap-

tive immune system has been explained by the Crossregulation Model (CRM)

(Leon et al., 2003). An ODE-system of the population dynamics (using prolif-

eration) has demonstrated very clearly the properties of this model. We would

like to see if recruitment instead of proliferation can replicate these properties.

In Section 2.3.1, we discuss the Crossregulation model and its implementation

in our study utilising both proliferation and recruitment. Section 2.3.2 explains

our stochastic simulation environment. Section 2.3.4 presents the resulting cell

population dynamics with proliferation and recruitment. Finally, in Section 2.3.5,

we go on to discuss the main issues concerning the application of adaptive im-

mune system-inspired approaches to realistic multirobot systems and how we

may overcome these issues.

2.3.1 Crossregulation model

The Crossregulation model describes the population dynamics of Th cells in the

periphery, taking into account three cell types.

1. Antigen presenting cells (A) that display a processed antigen on their sur-

12

face.

2. Effector cells (E) that can potentially induce an immune responses to for-

eign pathogens, or an autoimmune response to self-antigens.

3. Regulatory cells (R) that suppress effector cells preventing their clonal ex-

pansion.

In our implementation of the CRM, effector and regulatory cells can be in one

of three states, namely free (not bound to an APC), conjugated to an APC, or

activated. Effector cells in the free, conjugated and activated states are denoted

by Ef , Ec and Ea respectively. Similarly, regulatory cells in the free, conjugated

and activated states are denoted by Rf , Rc and Ra respectively.

The interactions between the effector and regulatory T cells, with the Antigen

presenting cells is described with the following system of ODEs. Total number

of conjugated sites in the population is C is given C = Ec + Rc, where Ec and

Rc denote the number of conjugated effector and regulatory cells. Changes in the

conjugated effector and regulatory cells is given by the following equations.

Ec′ = kbAEf

(

1−

(

C

As

)s)

− kubEc− δeEc (2.1)

Rc′ = kbARf

(

1−

(

C

As

)s)

− kubRc− δrRc (2.2)

In the above two equations, A is the number of APCs, s is the number of

binding sites per APC and, Ef and Rf represent the density of free effector and

regulatory cells respectively. The free cells bind to A at rate kb and unbind at rate

kub . In addition, δe and δr indicates the death rate of effector and regulatory cells

respectively.

According to the CRM, conjugated effector cells are able to proliferate only

when they do not have a neighbouring regulatory cell bound to the same APC.

If we denote by Pe, the probability that a conjugated effector cell has no neigh-

bouring regulatory cell, the equations describing the change in free and activated

effector cells is;

Ef ′ = −kbAEf

(

1−

(

C

As

)s)

− δeEf + kub(1− Pe)Ec+ 2σeEa (2.3)

13

Ea′ = kubPeEc− σeEa− δeEa (2.4)

In the above two equations, conjugated effector cells with no neighbouring

regulatory cell (PeEc) are selected for activation. These activated effector cells

proliferate at rate σe. By contrast, conjugated effector cells with a neighbouring

regulatory cell (1− Pe)Ec unbind without proliferation.

Conjugated regulatory cells on the other hand proliferate only upon being

colocalized with an effector cell. If we denote by Pr, the probability that a conju-

gated regulatory cell has a neighbouring conjugated effector cells, the equations

describing the change in free and activated regulatory cells is;

Rf ′ = −kbARf

(

1−

(

C

As

)s)

− δrRf + kub(1− Pr)Rc + 2σrRa (2.5)

Ra′ = kubPrRc− σrRa− δrRa (2.6)

In the above two equations, conjugated regulatory cells with a neighbouring

effector cell (PrRc), are selected for activation. These activated regulatory cells

proliferate at rate σr. However, conjugated regulatory cells with no neighbouring

effector cell (1− Pr)Rc, unbind without proliferation.

In our system of ODEs, the probabilities Pe and Pr are derived following a

multinomial approximation (Evans et al., 2000). This approximation is valid as

long as the total number of binding sites As is much larger than the number of

sites per APC. The probabilities, Pe and Pr can be given by the following two

equations, for A antigen presenting cells, with 3 binding sites per cell.

Pe =
(Rc− 3A)2

9A2
(2.7)

Pr =
(6A− Ec)Ec

9A2
(2.8)

The table 2.1 indicates the parameters with description, used in the analytical

model, and their values.

Cross-regulation model with recruitment

Cell proliferation is a fundamental mechanisms used by the adaptive immune

system. Since robots cannot proliferate, we have designed and studied a model of

14

Table 2.1: Parameters for differential equation system for the Crossregulation

model.

Parameters Description Value (a.u.)

kb Conjugation rate of T cells to

Antigen presenting cells

10−6

kub Dissociation rate of T cells from

Antigen presenting cells

10−3

σe Proliferation rate of effector cells 10−4

σr Proliferation rate of regulatory

cells

10−4

δe Death rate of effector cells (pro-

liferation model), or transition-

ing rate of effector cells to idle

type (recruitment model)

10−5

δr Death rate of regulatory cells

(proliferation model), or transi-

tioning rate of regulatory cells to

idle type (recruitment model)

10−5

kr Recruitment rate of idle cells 10−4

cross-regulation in populations with a fixed number of agents that use recruitment

instead of proliferation.

In our recruitment model, in addition to effector cells of type Ef , Ec, Ea and

regulatory cells of type Rf , Rc, Ra, we define a prefixed total number of cells N .

Cells that are neither effector or regulatory are considered as idle (I), where

I = N −Ef − Ec− Ea− Rf −Rc− Ra (2.9)

The system of equations for binding and unbinding between effector and reg-

ulatory cells is the same as in the proliferation model. However, cell proliferation

is now replaced by the recruitment of an idle agent into the proliferating cell’s

type, at rate kr (see Table. 2.1). Similarly, cell death is simulated by its transition

to an idle state. Consequently, the equations describing the changes in free and

activated effector cells is;

15

Ef ′ = −kbAEf

(

1−

(

C

As

)s)

− δeEf + kub(1− Pe)Ec+ 2σekrEaI (2.10)

Ea′ = kubPeEc− σekrEaI − δeEa (2.11)

Similarly, the equations describing the changes in free and activated regula-

tory cells is;

Rf ′ = −kbARf

(

1−

(

C

As

)s)

− δrRf + kub(1− Pr)Rc+ 2σrkrRaI (2.12)

Ra′ = kubPrRc− σrkrRaI − δrRa (2.13)

2.3.2 Simulation environment

We use a stochastic, spatial, discrete-time simulation environment (Tarapore and

Christensen, 2010) in which all entities are point-sized. Four types of entities are

simulated, namely effector agents, regulator agents, idle agents, and antigen pre-

senting cells (APCs). The three types of agents move at a speed of 0.3 units/cycle

and change direction with a probability of 0.01 each cycle. APCs do not move.

When a floating agents detects an APC within range and with a free binding

site, it conjugates to the APC. The agent remains close the static APC while con-

jugated. When an agent detaches from an APC, it recommences random walk. In

the recruitment model, an activated agent will simulate proliferation by recruit-

ing an idle agent. The recruited agent (the daughter) will become an agent of

the same type as the agent that recruited it, that is, either an effector agent or a

regulator agent.

Agents have a maximum perception range of 1 for APCs and 6 for other

agents. The other parameters used for our the stochastic simulation of the recruitment-

based cross-regulation model can be seen in Table 2.2.

2.3.3 Statistical analysis and numerical integration

At the start of the simulation, the population consisted of 60 effector cells (Ef =

60) and 40 regulatory cells (Rf = 40). In separate experiments, the number of

16

Table 2.2: Parameters for stochastic simulation of the Crossregulation model.

Parameters Description Value (a.u.)

v Velocity of cell 0.5

rA Detection radius for Antigen

presenting cell

1

L Area of experiment arena 106

kub Dissociation rate of T cells from

Antigen presenting cells

10−3

σe Proliferation rate of effector cells 10−4

σr Proliferation rate of regulatory

cells

10−4

δe Death rate of effector cells (pro-

liferation model), or transition-

ing rate of effector cells to idle

type (recruitment model)

10−5

δr Death rate of regulatory cells

(proliferation model), or transi-

tioning rate of regulatory cells to

idle type (recruitment model)

10−5

rI Detection radius for idle cell 6

Antigen Presenting Cells (A) was set at 20, 40, 60, 80 and 100. Each APC had 3

binding sites associated with it. Populations were simulated for 4x107 time-steps

at which point the number of effector and regulatory cells had converged in all

experiment conditions. In the case of the recruitment model, an identical set of

experiments was conducted, with the total number of cells N fixed at 20100.

Since the population dynamics appeared similar at high levels of APCs, tran-

sitions in cell population has been show for the extreme cases of 20 and 100 APCs.

To compare the number of effector and regulatory cells (E = Ef + Ec + Ea) and

(R = Rf +Rc+Ra), we illustrate for each treatment, the number of cells for each

of the 10 independent replicates.

In order to compare the results of the stochastic simulation with the analytical

model, the numerical integration of the set of ordinary differential equations was

performed using the Explicit Runge-Kutta method (Butcher, 2003). The proce-

17

dures used to compute the numerical integration, and the stable states illustrated

in the Bifurcation Diagram, were provided by the Mathematica software frame-

work (Wolfram Research, 2008).

2.3.4 Results

The results of the stochastic simulation indicate the population of effector and

regulatory cells to be in one of two stable states (Fig. 2.2), (i) an immune state,

characterised by the presence of only effector cells, and (ii) a tolerant state, con-

sisting of a dominant population of regulatory cells and few effector cells. In both

models of proliferation and recruitment, the system converge to an immune state

in the presence of few APCs (20 cells in Fig. 2.2b and d). In addition, an increase

in the number of APCs (100 cells in Fig. 2.2b and d) present in the environment

resulted in the system converging to a tolerant state

Our results also indicate that the suggested analytical model can explain the

population dynamics of the stochastic simulation for both proliferation and re-

cruitment (Fig. 2.2). In the steady state conditions, the bifurcation diagrams of

both these models appear qualitatively similar. At low APC doses, the system

could only reach an immune state. Additionally, upon increasing the APC dosage,

the system could jump to one of two stable states (immune or tolerant), depend-

ing on the configuration of the seed population, with the presence of an unstable

state in between. However, the bi-stability while seen in ODE model, has yet to

be verified with the stochastic simulation.

2.3.5 Summary and outlook

In this section, we highlighted the problems with utilising immune system in-

spired algorithms for robot collectives. We further propose an alternative to pro-

liferation, namely recruitment, that may be used with a fixed number of agents/robots.

Our stochastic simulations comparing proliferation and recruitment were demon-

strated for the Crossregulation model (Leon et al., 2003), and indicated qualita-

tively similar characteristics. In addition, the corresponding analytical models

also demonstrate the properties of the Crossregulation model and are able to well

explain the population dynamics of the stochastic simulations.

An important issue to note when utilising the recruitment model is the large

number of agents needed. In our simulations, 20000 idle agents had to be pro-

18

(a) Proliferation mode, 20 APCs) (b) Proliferation mode, 100 APCs)

(c) Recruitment mode, 20 APCs (d) Recruitment mode, 100 APCs

Figure 2.2: Number of effector (red) and regulatory (green) cells for different

number of Antigen presenting cells, with the stochastic simulation (solid), and

analytical model (dashed).

19

Figure 2.3: Total number of cells in stead state conditions for different doses of

Antigen presenting cells, with the proliferation (red) and recruitment (blue) mod-

els. Stable and unstable states are indicated by solid and dashed lines respec-

tively.

vided to the population. Addition, an increase in Antigen presenting cells would

demand an even higher number of these agents. Our current effort are involved

in reducing the number of idle agents needed, while retaining the characteristics

of the Crossregulation model.

The adaptive immune system may be considered to allow tolerance to emerge

from the local interactions between specific cell types, and largely independent

of specific characteristics of antigen. This characteristic has been explained by the

Crossregulation model, involving local interactions between effector, and regula-

tory cells at Antigen presenting cells. In the next step, we would like to emulate

the CRM in a novelty detection scenario, wherein the robots as a collective may

be able to discriminate between stimuli that are part of their environment (self-

antigens), and that which is newly introduced (foreign-antigens). The antigens

formulated, can be considered as a sequence, encoding important sensory infor-

mation. In such a scenario, antigen presenting cells may be considered as agents

that process and present the antigen sequence to effector and regulatory agents.

We hope that such a system may be able to discriminate between self and non-

20

self aspects of its environment in a robust manner, and without the need for any

specific information on the antigens.

2.4 Mathematical models

The differential equation model presented in this chapter explains populations

dynamics resulting from interactions between three cell types (antigen present-

ing, effector and regulatory cells). Based on the nature of an individual cell’s

“controller” at the micro-level, we were able to come up with a top-down, macro-

level model, to analyse the dynamics of the system. However, our existing math-

ematical model may not scale up to more complex systems involving a higher

number of micro-level states, the possibility of adding new states, and scenarios

with more complex (heterogeneous) environments. In such cases, as (i) detailed

multi-cellular stochastic simulations, or (ii) realistic collective robotic scenarios,

e.g., the novelty detection case discussed earlier, another mathematical formal-

ism is needed. In the fourth chapter, we present a stochastic petri net formalism

(a bottom-up approach) that may be adequate to scale up with more complex

simulations.

21

22

Chapter 3

Institutional inspired robotics

(Task 5)

The institutional inspired approach to collective robotics tackles the problem of

system design differently from a bio-inspired approach. Agents in institutional

robotics (IR) are comparatively more deliberative, their behaviour being harder

to capture. An IR approach allows us to consider agents as more complex then

reactive agents. In this approach, agents can actually modify the rules that guide

their behaviour, via cooperative decision-making processes. Coordination be-

tween agents is achieved by this self-regulation of social interactions since the

robots know not only how to behave in a given scenario but also what to expect

from other robots and the environment.

In this chapter we describe our work towards using institutions in a collective

robotics systems. Section 1 details a social dilemma scenario to experiment with

institutional concepts. An exploration of reinforcement learning in the decision

making process of institutional agent is then presented in section 2. In section 3

we present our implementation of a decentralised and institutional decision mak-

ing devices in a collective robotics task scenario. Finally, section 4 highlights our

conclusions and outlines the experiment scenarios to be investigated in the fu-

ture.

3.1 Social dilemma scenario

A “social dilemma” exists where there are no prima facie way to make actions

guided by the pursuing of (perceived) individual utility easily compatible to (per-

23

ceived) collective utility. A simplified model of common-pool resources could be

the basic setup (see Fig. 3.1), because it allows taking into account two impor-

tant features of most complex social situations at human level: the problematic

sustainability of the resources and the temptation to free-ride.

Figure 3.1: An example scenario demonstrating a collective task. The environ-

ment consists of objects of type A, B and C scattered randomly. Agents have to

forage for these objects and bring them to the building site.

The basic elements of such a scenario are the following:

1. the basic task is to construct as many specimens of a “virtual object” as

possible by assembling, in a specified way, tokens of different resources that

can be found in the environment (components A, B, and C to be assembled

as virtual objects A+B+C); the variation of this basic task should be easily

implementable;

2. the experiment takes place in a 2D space; within this virtual environment,

there is the “building site” (where the assembling takes place), and fields of

sources of the different components needed to build the virtual object;

3. individual robots try to maximise private utility functions (delivering com-

ponents to the building site); the system has a collective utility function,

mainly directed to the global task of building as many virtual objects as

possible; the basic social dilemma springs from these two kinds of utility

functions;

24

4. the resources system is a renewable resource system; it has a specific re-

plenishment rate; the rate of withdrawal must be balanced with the replen-

ishment rate to avoid (reversible) damage or (irreversible) destruction of

the resource system; initially, robots don’t have information neither about

the localisation of the spots where components can be collected nor about

replenishment rates of components’ sources.

Figure 3.2: An example of the social dilemma occurring at the assembly site. The

robots are required to assemble virtual objects A + B + C. A conflict occurs be-

tween delivering A to slot 4 (higher collective reward), in contrast to delivering

to slot 5 (higher individual reward).

The conflict between individual and collective utility occurs at the building

site (see example Fig. 3.2). Let us consider that delivering a component to slot

5 rewards 5 times more than delivering the same component to slot 1. In this

example situation, an A component should be delivered to slot 4 to immediate

completion of an object, but delivering that component to slot 5 is more rewarding

to the individual agent carrying it.

In order to experiment with institutional roles/positions as “packing informa-

tion” and “packing decision” devices, we focus on the functioning of the building

site and introduce an “assembler” there. The assembler works in the antecham-

ber of the building site as follows. It accepts from any three robots the delivery

of three components (A, B, C) allowing immediate construction of an object. It

calculates the most profitable way to put these components to the slots, giving

priority to collective utility. Consequently, the assembler calculates the total re-

ward corresponding to this delivery, takes to itself a certain percentage, and di-

vides the remainder equally by the contributing robots. After a while, the system

calculates the number of pieces completed during a given period. Another run

25

of the experiment goes without the assembler and letting each individual robot

pursuing its individual utility. In such a decentralised scenario, individuals de-

cide for themselves the assembly slot to place the object. The number of pieces

completed with both the decentralised, and the institutional regimes are com-

pared. We would like to experiment if (and at what extent) roles/positions can

improve both individual and collective utility and parameters influencing their

performance (for example, the percentage retained by the assembler may vary,

and it may impact the result: a too expensive assembler can make the device fail

when compared to purely individual behaviour).

3.2 Reinforcement learning in institutional robotics

The influence of the short and long term rewards on the agents decision is de-

pendent on the discount factor (γ), that is individual to each agent. This discount

factor represents the time horizon at which the agent perceives its reward. An

agent with a lower discount factor would prefer short term reward. By con-

trast, a high discount factor agent would make its decisions in order to obtain

a long term reward instead. The relationship between discount factor an agent

behaviour bears a strong relationship to reinforcement learning (RL) and decision

making theory. With the usage of RL, the agents behaviour does not need to be

hardcoded, avoiding an artifacts that may be introduced by the experimenter. In

this section, we investigate how reinforcement learning may be introduced into

our social dilemma scenario.

The main goal of the experiments to study the capacity of an institutional de-

vice to transform an unsustainable system into a sustainable one, where the threat

of unsustainability is due to the behaviour of short-sighted agents, without mod-

ifying the inner world of the individuals. To that effect, we need first to study the

impact of the percentage of short-sighted agents in a population of short-sighted

(i.e., with small discount factors γ) and far-sighted agents (i.e., with discount fac-

tors γ 1), in the expected accumulated reward (EAR) of the task at hand. In our

collective task, the expected accumulated reward concerns the number of pieces

completed in a given time horizon, e.g., T . The experiments are be carried out for

the decentralised and institutional regimes. We would like to investigate if the

assembler intervention turns an unsustainable system into a sustainable one. It

is important to note that while in the decentralised case the agents use RL to de-

26

termine their optimal policy, in the institutional case the policy is pre-determined

and applied by the assembler. However, in both cases the agents receive the re-

wards of every action taken of depositing parts in the bin slots.

Figure 3.3: Institutional (green) vs Decentralised (blue) typical expected perfor-

mance, concerning the number of pieces produced in a time interval T with and

without an assembler, respectively. For a EAR = 0.5 threshold, the percentage of

short-sighted agents above which the performance degrades below the threshold

is 18% in the Decentralised case, but increases to 35% in the Institutional case.

Note that in the interval [0, 10%], the number of pieces produced within the time

interval T is larger without a mediator.

We hypothesise that the EAR over the time horizon T will decrease in both

cases with the percentage of short-sighted agents in the population, because the

larger the number of greedy agents, the lower the number of complete pieces

completed in the same time interval. In the Institutional scenario, despite the fact

that the assembler performs the actions, the agents will still receive rewards and

the same situation will probably occur. However, we claim that the impact of the

percentage of short-sighted agents will be less, meaning that the EAR will decay

at a slower rate than for the Decentralised case when the percentage of short-

sighted agents increases. This results from the fact that the mediator/assembler is

by itself speeding up the piece assembly process. So a given performance (EAR)

threshold is met by a population with a larger number of short-sighted agents in

27

the Institutional case (see Fig. 3.3).

It is interesting to note that the rate of decay of the EAR plot in the Institu-

tional case may be initially faster than the rate of decay of the EAR plot for the

Decentralised case, and get below it for a given interval of short-sighted agents

densities (see Fig. 3.3). This would be intuitively explained by the fact that, for a

low number of agents, the population may not need a coordination artifact (i.e.,

the mediator/assembler).

An upper level of learning may be introduced in a second experiment, so as

to let the population be running Decentralised and Institutional regimes concur-

rently (or in a time-sharing manner, running one for some time interval, then the

other for another time interval and so on and so forth) and decide over time (for

a given percentage of short-sighted agents) whether to use Decentralised or Insti-

tutional mechanism. The decision to use an Institution would be interpreted as

the collective deciding a (pre-built) institution to improve its performance.

3.3 Implementation of decentralised and institutional

approaches

As a first step towards exploring the effects of the decentralised and institutional

regimes on the sustainability of the population, we consider that the behaviour of

the agents is hardcoded. Additionally, the institutional device is limited to pro-

cessing information at the assembly site. However for future investigations, we

could imagine the integration of RL, and the need for other institutional devices

if the resources in the environment are limited with a specific replenishment rate,

and the rate of withdrawal must be balanced with the replenishment rate to avoid

(reversible) damage or (irreversible) destruction of the system. In this implemen-

tation, we focus on an institutional device for decisions made at the assembly

site.

3.3.1 Defining the system

A population of agents has to produce pieces (1−2−3 . . . n), composed of individ-

ual components of type 1, 2, 3 . . . n. These n items are scattered across a building

site, and have to be brought to a pre-designated assembly site for the construction

of the final object.

28

The assembly site has m slots marked 1, 2, 3 . . .m, and equal to the short-term

reward the agent receives for placing the item in the slot. On returning to the

assembly site, the agent may instead choose to place its load so that a sequence

(1− 2− 3 . . . n) can be completed. Such robots may not receive a high short-term

reward, but may receive a long-term reward upon the completion of a sequence.

The influence of short and long term rewards is dependent on the discount factor

(γ), that is individual to each agent. Sustainability of the population is defined by

the number of assembled objects it can produce.

Assembly site

In our experiments, the state of the assembly site S can be defined by the follow-

ing m+ 1-tuple.

S = (Cm, Cm−1 . . . C1, F)

where m is the number of slots at the assembly site, Ci indicates the component

in each slot i ∈ {1 . . .m}, and F is the type of component brought by an agent to

the assembly site.

Ci ∈ {1, 2 . . . n, φ}, where n is the number of different types of components at

the building site. The slot i of the assembly site can hold a component of type

1, 2 . . . n, or it may even be empty (i.e., Ci = φ). The component brought by an

agent to the assembly site F ∈ {1, 2 . . . n}.

The completion of a piece requires the placement of components in consec-

utive slots of the building site, so as to get the exact sequence of components

(1, 2 . . . n).

Agent

The population to be evaluated consists of T agents. An individual agent Ai is

defined as follows.

Ai = (γi, Fi, ARi) for i ∈ {1, 2 . . . T},

where γi is the discount factor, Fi is the type of object collected by the agent, and

ARi is the agents accumulated reward.

29

3.3.2 Implementation of decentralised decision making

In a decentralised decision making scenario (Appendix C: algorithm 1), agents

decide on their own where to place the foraged component. For each of the slots

j, the agent computes the approximate utility uj it may receive if the component

is placed in slot j (Appendix C: algorithm 2).

uj = RIj + Pj(RC × γ)

The utility is the sum of the immediate reward associated with the slot (RIj =

j), and the discounted collective reward (RC × γ) when the component in the

slot allows the construction of a piece sometime in the future (i.e. Pj = 1 else

Pj = 0). Pj (see Appendix C: algorithm 3) can be considered as the prospect

of completing a piece when the component is placed at slot j. Finally, the agent

chooses the available slot that maximises its utility. Fig. 3.4 illustrates the flow of

components from the building site to the assembly site, controlled by the policy

of individual agents.

Figure 3.4: Decentralised decision making scenario with number of slots m =

5 and number of component types n = 3. Shortsighted (SSA) and farsighted

agents (FSA) forage the building site for components. Foraged components are

consequently placed in the assembly site in slots determined by a decentralised

decision making policy.

Setting parameters of the experiment: The discount factors for short-sighted

(γSSA) and far-sighted γFSA agents is fixed at 0.1 and 0.9. In addition, preliminary

experiments will be conducted to tune the collective reward RC. The reward

30

value for piece completion is be set to ensure that far-sighted agents will be com-

pensated for taking into account the long-term future reward of completing a

piece, compared to the short-sighted agents.

Experiments to perform: We would like to conduct independent experiments

while varying the proportion of short sighted agents in the population, and the

complexity at the assembly site. The complexity can be varied with the number

of slots at the assembly site m, and the number of component types n.

The experiments would allow us to investigate the density of short-sighted

agents (SSA) in the population that would drop the number of completed objects

below a threshold and require the need for institutions. Furthermore, the influ-

ence of the complexity of the assembly site on this density of SSA will also be

investigated.

3.3.3 Implementation of institution based decision making

In this previous case study we have selected a suitable collective reward (RC),

and seen the need for sustainability in scenarios with a high density of short

sighted agents. We now bring institutions into the picture . In the institutional

scenario (see Appendix C: Algorithm 4), the decision of where to place the com-

ponent is made by the assembler. The simulation proceeds as follows. Individual

agents gather components from the building site and proceed to the assembler.

If the assembler requires the component presented by the agent, it keeps it and

the agent is available to bring more components to the assembler. However, if

the assembler has no need for the component, the agent is made to wait at the

assembler until its component is needed for piece completion. Consequently, the

total number of agents T in the population is now divided into agents waiting at

the assembler W , and available agents A.

When the assembler has all the components necessary for completion of the

piece, it places the components 1, 2 . . . n in slots m,m − 1 . . .m − n + 1 (see Ap-

pendix C: Algorithm 5). After taking a assembler fee AF , the remaining collective

reward (RC−AF) is distributed amongst the contributing agents. The contribut-

ing agents also receive an individual ‘immediate’ reward corresponding to the

assembler slot index at which their component was placed. Fig. 3.5 illustrates the

flow of components from the building site to the assembly site, controlled by the

assembler. The assembler also controls the agents that are available for foraging

and those that are held waiting in a queue.

31

Figure 3.5: The flow of components (black arrows) and agents (red arrows) in an

institution decision making scenario. Available agents forage the building site for

components. The foraged component can be accepted by the assembler and the

agent then resumes foraging. However, if the component is not needed, the agent

in placed in a queue until the component is required by the assembler. Assembler

places the component in slots determined by a institution decision making policy.

Experiments to perform: We would like to conduct independent experiments

while varying the assembler fee (AF), and the complexity at the assembly site.

These experiments would allow us to investigate if an institution can transform

an unsustainable system into a sustainable one. In addition, how the complexity

at the assembly site would influence this transformation.

In the current case study, we do not expect the assembler fee (AF) to influence

the number of pieces completed. Instead, the fee would come into play when

agents can collectively decide the use of an institution.

3.4 Conclusions and future work

The second task report (Silva, 2010) suggested a set of experiments with insti-

tutional concepts. In this chapter, we have presented part of that scenario i.e.,

32

the agents behaviour at the building site. The main goal of the experiments is to

study the capacity of an institutional device to transform an unsustainable system

into a sustainable one. In this case, a sustainable system is a system producing a

level of resources (“energy”) high enough to “feed” all the agents. The produc-

tion of “energy” depends on the objects assembled at the building site. To model

this, we assume a threshold for the minimal production level the system must

guarantee.

The threat of unsustainability is due to the behaviour of short-sighted agents

(SSA). When deciding how to deliver a component to the building site, SSA are

able to take into account the reward they can get immediately from delivering a

component to the building site (type 1 reward), but are not able to take into ac-

count the reward they can receive later when that component is part of a new as-

sembled object (type 2 reward). The decision-making of far-sighted (FSA) agents

take into account both types of reward. SSA are agents with small discount fac-

tors; FSA are agents with discount factors close to 1.

Our study would compare two different basic versions of the scenario, namely

the Decentralised and Institutional regimes. In the Decentralised case, each agent

guided only by his short-sighted or far-sighted decision mechanism, delivers the

components to the building site. By contrast, the Institutional case involves a me-

diator working at the building site that collects from other agents a right combina-

tion of components to complete an object; finishes the assembling at the building

site; collects, at the same time, both type 1 and 2 rewards due to those compo-

nents, retains a “service tax”, and gives the remaining to the agents who delivered

the parts.

In our experiments, we do not want the system to be sustainable only by an

external decision of the experimenter. Consequently, in future work, each agent

compare the reward he received at both decentralised and institutional scenarios,

and they all decide by majority vote which scenario they prefer. Each agent will

vote for the scenario that paid him the greater reward. The system will be self-

sustaining if the most productive scenario is the one preferred by the majority of

individual agents. Agents do not need to be altruistic: we would like to know if

an institutional device can make the system self-sustaining as a collective, with-

out the need of external intervention âĂŞ and without changing SSA to FSA. This

would indicate that we are not working at psychological individual level, but at

collective, organisational level.

33

In this chapter we have also discussed endowing the agents with some kind

of unsupervised learning. Since the discount factors make a connection with Re-

inforcement Learning, we considered using RL. We would like to explore this

implementation in the future. However it is important to note, that it may be

difficult to model all relevant aspects of the institutional background with RL.

For example, there is no “objective world” within the scenario, because the same

action can have different outcomes depending on future actions of other agents

(more “cooperative” or more “individualistic”). In addition, it would take a long

time for an agent to visit all the relevant possible states to correctly assess the

situation. Another option we would like to assess in the future is to let agents

compare multiple trials of both the decentralised and the institutional scenarios

and then let them decide (by majority vote) based only on the sum reward each

received. Such a scenario could be considered as a form of collective learning,

unbiased by the experimenter and with the population deciding on the scenario

most beneficial for its sustainability.

34

Chapter 4

Modelling institutions with Petri net

formalism (Task 6)

4.1 Introduction

One of the goals of our research is to formalize the concepts of Institutional

Robotics (IR) from a computer science perspective. In (Pereira et al., 2011), we

presented a formalization of institutions, using Executable Petri Nets as an ab-

stract representation. This formalism allows the design and execution of institu-

tions in robots, so as to obtain behaviors capturing social interactions of interest.

Our method produces, from a set of institutions, a robot controller able to execute

a desired task. A further goal of our research is to develop models of the IR ap-

proach, in order to quantitatively and qualitatively predict the performance of the

system, carry out possible optimizations, formally analyze performance bounds,

and verify general system properties (e.g. liveness).

We are interested in assessing if institutional controllers can be used for mod-

eling the distributed robotic system they control by providing the necessary model

structures. We use the Petri Net structures of the institutions designed for our

case study to derive a macroscopic model that captures the mean-field dynamics

of the distributed robotic system. We compare our model predictions with results

obtained in realistic simulation.

35

4.2 Institutional Robotics Models

Our intended approach to modeling in the Institutional Robotics framework con-

sists on the employment of our formalism of institutions (Pereira et al., 2011), in

order to obtain a controller that allows robots to execute the task at hand, and

subsequent construction of a stochastic model based on that controller. In this

section we will detail separately the formalism of institutions and the stochastic

model construction. As an example for both we will use the wireless connected

swarm case study.

4.2.1 Institutional Agent Controller

Starting from the concept of institutions as coordination artifacts (Tummolini and

Castelfranchi, 2006) we model them using a formal representation, leading to

a standard design and execution platform (in real robots, realistic simulations,

and multi-agent systems). Institutions can be considered as behavioral abstrac-

tions meant to improve coordination activities. They represent the basic build-

ing blocks for creating shared coordinated working environments. Considering

the three main properties of coordination artifacts mentioned in (Omicini et al.,

2004), specialization, encapsulation, and inspectability, we propose to use Petri

Nets (PN) (Cassandras and Lafortune, 2008) as the formal framework.

Our aim is to formalize institutions as Petri Nets both for design and execution

of robotic controllers. This means that we need to take into account robot actions

and sensor readings. We consider three sets of building blocks that will allow us

to design our controllers.

The set Act contains all robot actions (combinations of two or more primitive

actions can be considered as actions). The set Cdt contains boolean conditions

that can be verified by checking sensor readings. Finally, the set Pac contains

“parameter actions”, which are auxiliary actions not concerning actuators but

that only modify variables needed for the actions in Act.

We are now able to define our own version of Petri Nets used for execution of

our robotic controllers.

Definition: An Executable Petri Net (EPN) is a Petri Net (P, T, A, w,X) where:

• each place pi ∈ P has an associated action ai ∈ Act;

36

Algorithm 4.1 Execute Petri Net

1: repeat

2: for all enabled transitions ti ∈ T do

3: if associated condition ci is true then

4: run associated parameter action pai

5: fire transition ti

6: end if

7: end for

8: until no transition has fired

9: for all marked places pi ∈ P do

10: run associated action ai

11: end for

• each transition ti ∈ T has an associated condition ci ∈ Cdt and an associated

parameter action pai ∈ Pac.

The basic intuition behind this definition is that by associating actions with

places we are able to define which actions are to be executed at each time step.

This is done simply by checking if the corresponding place is marked. By asso-

ciating transitions with conditions verified by sensor readings we trigger state

changes in the Petri Net due to changes in the robots environment. Algorithm 1

is performed by the robots at each time step, allowing the robots to execute the

behavior designed in an EPN.

Institutions are formalized as coordination artifacts in a modular fashion. Each

institution is represented by an EPN that can be executed independently or to-

gether with other institutions. The individual behavior for the robots is also rep-

resented by an EPN. While the institutions specify behaviors that have a social

nature, i.e., they relate the robot to other robots in some way, the individual be-

havior specifies a set of basic behaviors that have exclusively an individual nature,

i.e., they relate the robot with the surrounding environment. The composition of

the individual behavior with a set of institutions will generate a robot controller.

We now present our formalized definition of institution:

Definition: An Institution I is a four-tuple (Inst, initialI , f inalI , dI) where:

• Inst is an EPN;

37

• initialI , f inalI ∈ Cdt are initial and final conditions for the execution of

Inst;

• dI ∈ D is the associated deontic operator.

The EPN Inst specifies the desired behavior that should be performed by the

robot. This behavior is not always being executed, its start and finish are dictated

by conditions initialI and finalI , which the robot verifies at each time step. Thus,

we say that an institution I at each time step can be active or idle. Each institution

also includes a deontic operator dI which is used when combining it with the

robot individual behavior and further institutions. Despite Inst being designed

by hand, institutions can be kept simple and further behavioral complexity can

reached by composition, in a modular fashion.

The composition of the individual behavior with a set of institutions is non-

trivial since concurrent execution of some of the institutions might be impossible

or at least inadequate to the task the robot is carrying out. To guide this compo-

sition we introduce the following set of deontic operators.

Definition: The set D of deontic operators for IR institutions includes the fol-

lowing deontic operators: {AllowAll, StopInd, StopInst, StopAll}. Their corre-

sponding definitions are as follows:

• AllowAll implies that the associated institution can be executed concur-

rently with the individual behavior and all the other institutions;

• StopInd implies that the associated institution cannot be executed concur-

rently with the individual behavior;

• StopInst implies that the associated institution cannot be executed concur-

rently with other institutions;

• StopAll implies that the associated institution cannot be executed concur-

rently with the individual behavior or other institutions.

Petri Nets (and thus EPN) can be represented in a hierarchical fashion, using

two distinct layers. We consider that individual behavior and institutions are part

of a lower layer and are represented by one macro place in the higher layer, as

shown in Fig. 4.1. If a macro place is marked, the individual behavior or institu-

tion that it represents is active, otherwise it is idle. This allows us to compose our

38

Action 2Action 1

Condition 1

Condition 2
mI

Lower Layer Higher Layer

Figure 4.1: Hierarchical representation of an EPN in two layers. Dotted arcs rep-

resent two directional arcs, one from a transition to a place and one from a place

to a transition. Left side: lower layer, EPN Inst with conditions and actions as-

sociated to transitions and places. Right side: higher layer, macro place mI in

red.

institutions in the higher layer where relationships among the institutions and the

individual behavior should be specified, while keeping relationships between ac-

tions and conditions separated in the lower layer. The composition procedure is

explained in detail in (Pereira et al., 2011).

We can now define our Institutional Agent Controller that will guide the per-

formance of our robots:

Definition: An Institutional Agent Controller (IAC) is an EPN resulting from the

composition of an individual behavior Ind and a set of institutions {I1, . . . , In}

controlled by the deontic operators dI1 , . . . , dIn .

4.2.2 Modeling with Institutional Controllers

In our research we are interested in borrowing some key concepts from a multi-

level probabilistic modeling methodology established for swarm robotic systems

(Martinoli et al., 2004), that takes into account individual microscopic models

based on the robots controllers and abstracts a macroscopic model of the dynam-

ics of the whole team.

Following the intuition of using the robots controller as a starting point for

our models, we will use Generalized Stochastic Petri Nets (GSPN) (Bause and

Kritzinger, 2002) to construct our macroscopic model. In GSPN two types of

39

transition are considered, immediate and timed. Timed transitions specify that

a probabilistic time interval must pass before the transition can fire. If this time

interval has a probabilistic exponential distribution with rate λ, we say that the

transition is exponential with λ being called the transition rate. The marking

process of a GSPN where all timed transitions are exponential is equivalent to a

continuous time Markov chain (Bause and Kritzinger, 2002). This allows us to

perform steady state analysis of the GSPN.

We consider a case study previously investigated in (Nembrini et al., 2002)

and (Winfield et al., 2008), where a decentralized control algorithm is able to

maintain a certain degree of spatial compactness of a robotic swarm (with N

robots) in an unbounded arena using exclusively, as information at the robot

level, the current number of wireless connections to the neighbors. The commu-

nication is local and its bounded range a parameter of the robotic system. Let X

be the number of connections perceived by a robot. In the default state (defined as

forward), the robot simply moves forward. If at any time the robot senses the loss

of a connection and X falls below a threshold α (where α ∈ {0, . . . , N − 1}), the

robot assumes it is going in the wrong direction and switches to state coherence.

In this state the robot performs a 180◦ turn in order to recover the lost connec-

tion. Upon recovering the lost connection, the robot performs a random turn and

moves back to the default state. If the connection is not recovered, the robot sim-

ply moves to the default state. If an obstacle is detected the robot immediately

switches to state avoid, where it performs obstacle avoidance for a given number

of time steps, after which it returns to its previous state.

We designed an individual behavior Ind and institutions I1 and I2 in order for

the robots to perform the task. These are displayed at the lower layer of Fig. 4.2.

The composition of individual behavior and institutions is shown at the higher

layer of Fig. 4.2. The final controller is the full EPN of Fig. 4.2 after merging the

two layers.

We considered 40 robots in an unbounded arena performing the task over 10

000 seconds. We fix the connection threshold to one single value, α = 15, and

set the communication radius of the robots to 0.7 m. We performed 100 runs of a

realistic simulation using Webots.

When applying the proposed modeling methodology to the institutional robotics

approach we are mainly interested in studying the relationships between differ-

ent behaviors specified in the higher layer of the IAC. However, in some cases,

40

mI2

finalI2 initialI2

mInd

idleI2

idleInd,I2

random turn

forward

obstacle end
turn

Individual Behavior - Ind

turn
180º

recovered
connection

end
move

Institution 1 - I1

Lower Layer

Higher Layer

mI1

finalI1 initialI1

idleI1

idleInd,I1

voidvoid

end
turn

lost
connection

move

avoid

end
avoid

Institution 2 - I2

M
o
d
e
l

Figure 4.2: IAC for wireless connected swarm. Lower layer: EPNs for individual

behavior Ind and institutions I1 and I2. Higher layer: composition of individual

behavior and institutions. PN structure for GSPN model encapsulated in blue

box.

details about implementation of behaviors might also be of interest. By using

the two layers of the IAC we can select sections of the EPN that are of interest

for a given model. For our proposed model, the higher layer would suffice if

only states forward and coherence were considered (with coherence correspond-

ing to markings where the macro place for institution I1 is marked). However, to

also consider state avoid we need the lower layer implementation of the individ-

ual behavior, in order to make the distinction between avoid and forward. The

GSPN structure for our model is presented in Fig. 4.2 as the section of the IAC

encapsulated by the blue box.

The only immediate transitions in the model are those that are not associated

with any condition. These correspond to the control transitions added during

composition of behaviors, and are the transitions linking the macro place of the

individual behavior mind with idle places idleind,I1 and idleind,I2. The remaining

transitions in the model are timed and their transition rates need to be estimated.

These correspond to conditions obstacle, end avoid, and the initial and final con-

41

ditions for both institutions. Given that our goal is only to establish that the IAC

structure can be used as a GSPN model, we choose to estimate the transition rates

directly from data gathered during realistic simulations. The transition rates are

calculated separately for each number of connections (k = 0, . . . , 40). We do this

by counting the number of time steps the input places of transition i are marked

(ti,k) and the number of times transition i fires (fi,k), for all robots in all runs,

while the number of connections of the robot is k. These are then averaged by

the total number of time steps, the number of robots and of runs (averages repre-

sented by ti,k and fi,k). The rate of transition i with k connections is calculated as

λi,k = fi,k/ti,k.

For each number of connections, we perform steady state analysis on our

GSPN model with rates λi,k (i = 1, . . . , 6). This analysis gives us the steady state

probability for each tangible marking in our GSPN model. As before, we consider

that state avoid corresponds to markings where the individual behavior is active

and the avoid place is marked, state coherence corresponds to markings where

institution I1 is active, and all other markings correspond to state forward. By

summing the probabilities for all markings corresponding to each state we ob-

tain the desired state distribution model.

The model results are displayed in Fig. 4.3-(a). They show how the probability

of being in each state varies with the number of connections. In Fig. 4.3-(b), we

display the state distribution from our simulations results. The absolute error

between model and simulation results is display in Fig. 4.4. We can observe an

almost perfect matching between the two results. This is to be expected since our

estimation of transition rates comes directly from the data gathered during the

simulations. The larger error in Fig. 4.4 comes from the extremely low number

of time steps and transition fires for robots with 38 connections. This affects the

calculation of the correct rate and thus generates a bigger error in the model. We

conclude that with a correct estimation of transition rates, our IAC provides a

good structure for the generation of macroscopic models.

4.3 Summary and Future Work

Using the EPN structure of the IAC designed for the case study, we were able

to construct a GSPN model for overall state distribution of the system. By using

data gathered from realistic simulations in order to estimate the transition rates

42

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

connections

st
at

e
di

st
rib

ut
io

n

forward
coherence
avoid

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

connections

st
at

e
di

st
rib

ut
io

n

forward
coherence
avoid

(a) (b)

Figure 4.3: (a) State distribution predicted from GSPN model; (b) State distribu-

tion from simulation results.

0 5 10 15 20 25 30 35 40
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

connections

er
ro

r

forward
coherence
avoid

Figure 4.4: Absolute error between model and simulation results.

necessary for our GSPN model, we were able to observe a very good agreement

between model predictions and simulation results. We can conclude that with a

correct estimation of transition rates, our IAC provides a good structure for the

generation of macroscopic models.

In the future we intend to further improve our GSPN models, for instance,

with estimation of transition rates directly computed using geometrical consider-

ations of the scenario rather than on data gathered in simulation. An alternative

algorithm for this case study, considering the sharing of neighborhood informa-

tion among robots, is presented in (Nembrini et al., 2002). We intend to design an

43

IAC for this algorithm and apply our modeling methodology, in order to inves-

tigate situations where the microscopic-to-macroscopic (or individual-to-swarm)

mapping might be less straightforward to capture accurately because of the ad-

ditional complexity of the coordination algorithm.

44

Appendix A

Binomial heap implementation for

fast multi-cellular stochastic

simulation

A.1 Stochastic simulation algorithm

Simulating the stochastic dynamics of the molecular reaction events within the

cell, and the events leading to changes in cell population size and composition

is a computational challenge. In this study, we propose a novel implementation

of the Gillespie stochastic simulation algorithm (Gillespie, 1976) that keeps track

of the multilevel granularity of the system and is computationally efficient. The

core of the algorithm is the storage of events in a binomial heap (Chapter 19 in

(Cormen et al., 2001)), a data structure which was developed by Jean Vuillemin

in the mid 1970s (Vuillemin, 1978). Binomial heaps have been characterised as

a practical and nearly optimal priority queue implementation (Brown, 1978), al-

lowing the critical operation of finding the next event to be fired from a dynam-

ically changing set of events in time proportion to the logarithm of the number

of events, not to the number of events itself. In addition, the computational time

taken for operations on binomial heaps are not very sensitive to the priority distri-

bution of events, as demonstrated with a discrete event simulation model (Jones,

1986). In terms of computational memory usage, a binomial heap data structure

allows for an efficient and flexible allocation of memory. This is in contrast to

the binary heap data structure (Chapter 6 in (Cormen et al., 2001)), used previ-

ously to implement Gillespie like algorithms (Gibson and Bruck, 2000; Stamatakis

45

and Zygourakis, 2010), and requiring a contiguous allocation of memory blocks

to operate. In summary, the binomial heap serves as an ideal data structure to

implement the priority queue of a dynamically varying set of reactions of our

stochastic simulation

A.2 Binomial tree

A binomial heap consists of a collection of binomial trees. In this section we de-

fine a binomial tree and prove some of its important properties. Consequently,

we define a binomial heap and illustrate its representation in our stochastic sim-

ulation.

A binomial tree Bk is an ordered tree (Appendix B in (Cormen et al., 2001)) de-

fined recursively. The tree B0 consists of a single node, and Bk consists of two

binomial trees Bk−1 that are linked together i.e., the root of one is the leftmost

child of the root of the other (Figure A.1a). The binomial trees B0 through B3 are

indicated in Figure A.1b.

Lemma A.2.1 The properties of of the binomial tree Bk.

1. The tree has 2k nodes.

2. The height of the tree is k.

3. There are exactly
(

n

k

)

nodes at depth i for i = 0 . . . k.

4. The root node has degree k, which is greater than that of any other node in the tree.

Proof The properties outlined above can be proved by induction on k. For each

property (Lemma A.2.1), the basis is the binomial tree B0. Each of the properties

can easily be verified for B0. The inductive step assumes that Lemma A.2.1 holds

for Bk−1

1. The binomial tree Bk consists of two copies of Bk−1 linked together. Conse-

quently, Bk has 2k−1 + 2k−1 = 2k nodes.

2. Consequent to the manner in which the two Bk−1 trees are linked together

to form Bk, the maximum depth of a node in Bk is one greater than the

maximum depth of a node in Bk−1. Therefore by the inductive hypothesis,

the maximum depth of Bk is (k − 1) + 1 = k.

46

3. Let us denote D (k, i) to be be the number of nodes at depth i of binomial

tree Bk. Consequent to the manner in which which the two copies of Bk−1

are linked together to form Bk, a node at depth i in Bk−1 appears once at

depth i in Bk and once at depth i + 1. So the number of nodes at depth i in

Bk is the sum of the number of nodes at depth i− 1 in Bk−1 and the number

of nodes at depth i− 2 in Bk−1.

Following this, the number of node at depth i of binomial tree Bk can be

expressed as,

D (k, i) = D (k − 1, i) +D (k − 1, i− 1)

D (k, i) =

(

k − 1

i

)

+

(

k − 1

i− 1

)

(by the inductive hypothesis)

When solved, the sum of the two binomial coefficients reduces to,

D (k, i) =

(

k

i

)

4. The only node with greater degree in Bk than in Bk−1 is the root node of Bk

which has one more child than in Bk−1. Since the root of Bk−1 has degree

k − 1, the root of Bk has degree k.

A.3 Binomial heap

A binomial heap H is defined as a collections of binomial trees that satisfies the

following properties.

1. Each binomial tree H obeys the min-heap property. The key (e.g. reaction

waiting time) of a node is greater than or equal that of its parent. Conse-

quently, the root of each tree contains the lowest reaction waiting time in

that tree. Such a tree is referred to as min-heap-ordered.

2. For any non-negative integer k, there is at most one binomial tree Bk in H .

The second property implies that a binomial heap H containing the waiting

time of n reactions will consist of at most ⌊lg n⌋ + 1 binomial trees. This can be

understood by observing that the binary representation of n has ⌊lg n⌋ + 1 bits.

say 〈b⌊lgn⌋, b⌊lgn⌋−1, . . . b0〉, so that n =
∑⌊lgn⌋

i=0 bi2
i. Consequent to property 1 of

Lemma A.2.1, the binomial tree Bi appears in H if and only if bit bi = 1. Therefore,

the binomial heap H can contain at most ⌊lg n⌋ + 1 binomial trees. Figure A.2a,

shows a binomial heap H with 11 nodes. The binary representation of 11 is 1011

47

, and H consists of min-heap-ordered binomial trees B3, B1, and B0, having 8, 2,

and 1 nodes respectively, for a total of 11 nodes.

A.3.1 Binomial heap representation

In our stochastic simulation, each binomial tree within the binomial heap is stored

utilising the left-child, right-sibling representation (Chapter 10 in (Cormen et al.,

2001)). Each node of the tree has a key (the waiting time for a reaction) and

a pointer to information about the reaction. In addition, each node t contains

pointers p [t] to its parent, child [t] to its leftmost child, and sibling [t] to the sibling

of t at its immediate right (Figure A.2b). Additionally, each node t also contains

degree [t] i.e., the number of its children. As indicated in Figure A.2b, the roots of

all the binomial trees in the heap are organised in a linked list, which is further

referred to as the root list. The degrees of the roots strictly increase as we traverse

the root list. Consequent to the second binomial heap property, the degrees of the

roots of a n-node binomial heap are a subset of {0, 1, . . . ⌊lg n⌋}. The sibling field

has a different meaning for roots than for non-roots. If t is in the root list, sibling [t]

points to the next root in the list.

A.3.2 Operations performed on binomial heaps

During our stochastic simulation, events pertaining to molecular reactions, and

changes in Th cell population and composition are added, deleted, or updated

(regeneration of reaction waiting time) in the heap. We now outline the corre-

sponding operations performed on the heap, and illustrate their working with an

example binomial heap.

MAKE-BINOMIAL-HEAP to create a new binomial heap: A given binomial

heap H is accessed with head [H], a pointer to the ïňĄrst root in the root list of

H . In order to make an empty binomial heap, the MAKE-BINOMIAL-HEAP

procedure allocates and returns returns an object H , with head [H] = NIL, in a

constant amount of time.

BINOMIAL-HEAP-MINIMUM to find the next reaction to occur: The proce-

dure BINOMIAL-HEAP-MINIMUM returns the pointer to the node with the low-

est reaction waiting time in an n-node binomial heap H . Since the binomial heap

consists of a collection of min-heap-ordered binomial trees, the reaction with the

48

lowest waiting time must reside in one of the root nodes. This procedure checks

all the root nodes of the binomial heap for the reaction with the lowest waiting

time. Because the root nodes of the binomial heap number at most ⌊lgn⌋ + 1, the

next reaction to occur is found in time O (lg n).

BINOMIAL-HEAP-UNION to unite two binomial heaps: The procedure to

unite two binomial heaps, say H1 and H2 is used by operations to insert, delete

and update reactions to the heap. It involves two phases. The first phase merges

the root lists of binomial heaps H1 and H2 into a single linked list H that is sorted

by degree in a monotonically increasing order (Figure A.3a and b). In the result-

ing heap H , there may be as many as two roots (but no more) of each degree.

Consequently, the second phase of the union operation links roots of equal de-

gree until at most one root remains of each degree. In Figure A.3b and c, we

demonstrate the linking of the two binomial trees B1 in H , resulting in B2. Sub-

sequently, two binomial trees B2 are now present in the heap, which are linked

in the next step to form B3 (Figure A.3c and d), and the operation can now be

terminated. The procedure has been shown to have a running time of O (lg n)

(Chapter 19 in (Cormen et al., 2001)).

BINOMIAL-HEAP-INSERT to insert a new reaction into the heap: During

the course of our stochastic simulation, new reactions are added to the priority

queue depending on the nature of the reaction that has just occurred (see de-

pendency table). The insert procedure simply makes a one-node binomial heap

H
′

in constant time and unites it with the n-node binomial heap H by a call

to BINOMIAL-HEAP-UNION, in O (lg n) time. To demonstrate this procedure,

consider a 9-node binomial heap H (Figure A.4a). The node to be inserted is in

1-node heap H
′

which is merged with H (Figure A.4b). The operation of uniting

two binomial heaps in now performed on H until at most one root remains of

each degree (Figure A.4c and d).

BINOMIAL-HEAP-EXTRACT to extract the next reaction to occur from the

heap: Upon the occurrence of a reaction, we remove the node representing it from

the heap. The extraction procedure as demonstrated on an input binomial heap H

(Figure A.5a), starts by removing the root t with the minimum key from the root

list of H (Figure A.5b). The Figure A.5c, shows that by reversing the list of t’s

children, we have a binomial heap H
′

that contains every node in t’s tree except

49

for t itself. Since t’s tree was removed from H , the binomial heap (Figure A.5d),

that results from uniting H and H
′

contains every node that was present in H

except for t.

BINOMIAL-HEAP-UPDATE to update the waiting time of a reaction in the

heap: Consequent to the occurrence of certain events (listed in dependency ta-

ble), the waiting time of an event in the binomial heap may have to be regener-

ated, and its position in the heap updated. When the newly generated waiting

time is no greater than the current value, the following procedure is employed to

reposition the node. As shown in Figure A.6, the procedure repositions the as-

sociated node by “bubbling it up” the heap. As an example consider a binomial

heap H with a node t whose waiting time has to be updated (Figure A.6a). After

ensuring that the new waiting time is in fact no greater than the current value and

then assigning the new value to t, the procedure goes up the tree, with c initially

pointing to node t. In each iteration, key [c] is compared to the key of c’s parent

p. If c is the root or key [c] ≥ key [p], the binomial tree is now min-heap-ordered.

Otherwise, node c violates min-heap ordering, and therefore its key is exchanged

with the key of its parent p, along with information about the reaction. The pro-

cedure then updates c to p (Figure A.6b and c), going up one level in the tree, and

proceeds with the next iteration.

The above procedure operates on the condition that the updated key is no

greater than the current key. In cases when this condition is not satisfied, the

corresponding node t is deleted from the heap (see procedure BINOMIAL-HEAP-

DELETE), and a new node with the regenerated waiting time is inserted into heap

H .

BINOMIAL-HEAP-DELETE to delete a reaction from the heap. The proce-

dure to delete a node x from the heap H is performed by first assigning key [x] to

−∞. Following the update to key [x], the node x is bubbled up to the root of the

tree by a call to BINOMIAL-HEAP-UPDATE. This root is then removed from H

by a call to the BINOMIAL-HEAP-EXTRACT procedure.

50

B0

Bk-1

Bk-1

Bk

(a)

B0
B1 B2

depth

 0

 1

 2

(b)

Figure A.1: Collection of binomial trees. (a) The recursive deïňĄnition of the

binomial tree Bk . The triangles adjoining the nodes represent rooted sub-trees.

(b) The binomial trees B0 through B3. Depth of nodes of B3 are shown.

51

head[H] 2.7 1.8

4.7 26.2

9.8

21.3

29.216.717.9

13.2 18.1

(a)

head[H]

2.7 1.8

4.7

9.8

13.2 18.1 26.2

17.9 16.7 29.2

21.3 R11

R2R1

R3

R4

R5 R6 R7

R8 R9 R10

30

0

0

0

00

1

12

1

parent

degree

child
sibling

waiting time event

(b)

Figure A.2: Representation of a binomial heap. A binomial heap H with 11

nodes. (a) The heap H consists of binomial trees B0, B1 and B3, which have

1, 2, and 8 nodes respectively, totalling 11 nodes. Since each binomial tree is

min-heap-ordered, the waiting time of any node is no less than that of its parent.

Also indicated is the root list, a linked list of roots in order of increasing degree.

(b) The representation of the binomial heap H , as implemented in our stochastic

simulation.

52

head[H1] 2.7 1.8

4.7 26.2

9.8

29.2

18.1

head[H2] 2.8

7.9

(a)

head[H] 2.7 1.8

4.7 26.2

9.8

29.2

18.1

2.8

7.9

(b)

head[H] 2.7 1.8

4.7 26.2

9.8

29.2

18.12.8

7.9

(c)

head[H] 2.7 1.8

4.7

26.2

9.8

29.2

18.1

2.8

7.9

(d)

Figure A.3: Uniting two binomial heaps. (a) Binomial heaps H1 and H2 that are

to be united. The heap H1 consists of binomial trees B0, B1 and B2, while H2

consists of B2. (b) A heap H from merging of H1 and H2 has two binomial trees

B1. (c) The union of the two trees B1 in H , into a binomial tree B2. (d) Proceeding

along the root list, the union of two binomial trees B2 results in B3. As shown,

the heap H now has at most one root of each degree.

53

head[H] 2.7

26.2

9.8

29.2

18.1

head[H'] 3.7

(a)

head[H] 2.7

26.2

9.8

29.2

18.1

3.7

(b)

head[H] 2.7

26.2

9.8

29.2

18.1
3.7

(c)

Figure A.4: Insertion of new event into binomial heap. (a) A binomial heap

H with 5 nodes and the heap H
′

consisting of the new node to be inserted. (b)

Merging of the two heaps results in H having two binomial trees B0. (c) The two

trees B0 are united as shown, resulting in binomial tree B1. The heap H now has

at most one root of each degree.

54

head[H] 2.7 1.8

4.7 26.2

0.2

21.3

29.216.717.9

13.2 18.1

(a)

head[H] 2.7 1.8

4.7 26.2

0.2

21.3

29.216.717.9

13.2 18.1

(b)

head[H] 2.7 1.8

4.7

26.2

21.3

29.2 16.717.9

13.218.1head[H']

(c)

head[H] 2.7 1.8

4.726.2

29.2

18.1

21.3

16.717.9

13.2

(d)

Figure A.5: Extraction of next event from binomial heap. (a) A binomial heap H

with 11 nodes. The next reaction to be executed is associated with the root node

t of B3. (b) The root t associated with the next reaction to occur, is removed from

the heap H . (c). The list of t’s children is reversed, to form another binomial heap

H
′

.(d) The result of uniting the two binomial heaps, H and H
′

are united.

55

head[H] 2.7 1.8

4.726.2

29.2

18.1

21.3

16.70.9

13.2

c

p

(a)

head[H] 2.7 1.8

4.726.2

29.2

18.1

21.3

16.713.2

0.9
c

p

(b)

head[H] 2.7 0.9

4.726.2

29.2

18.1

21.3

16.713.2

1.8

c

(c)

Figure A.6: Repositioning of event in binomial heap after update in waiting

time. (a) A binomial heap H , with a node c with an updated waiting time. Conse-

quently, the heap H is not min-heap-ordered. (b) The result of exchanging nodes

c and p in H , but the min-heap-order of H continues to be violated.(c) The result

of another exchange of c and p The min-heap-order of H is now satisfied.

56

Appendix B

Parameters for multi-cellular

stochastic simulation

Table B.1: Event parameters of Th cell gene regulatory network.

Component Average waiting time

CD28, IFNBR, IFNGR, IL2R, IL4R,

IL6R, IL10R, IL12R, IL15R, IL21R,

IL23R, IL27R, TCR and TGFBR

0.05 h

NFAT, STAT1, STAT3, STAT4, STAT5,

STAT6, SMAD3, RUNX3, NFKB and

IKB

1 h

IL12RB1, IL12RB2, IL2RA, TBET,

GATA3, FOXP3, IRF1, RORGT, IL2∗,

IFNG∗∗, IL17∗∗, IL4∗∗, IL10∗∗, IL21∗∗,

IL23∗∗ and TGFB∗∗

20 h

* = cytokine component is not activated in G0

** = cytokine component is not activated in G0 and G1

Average waiting times for three different classes of components of the cell

logical network. The waiting times apply to both unitary increments and

decrements of the component level.

57

Table B.2: Event parameters of Th cell cycle.

Parameters Description Value

σG0 Residual time in quiescent

phase

46.5 h

σG1 Residual time in first growth

phase

0.7 h

σR
G1 Residual time to revert to quies-

cent phase

72 h

τS Average time to synthesise DNA 6 h

τG2M Average time in second growth

stage and mitosis

2 h

τD Average lifespan of a Th cell 67 h

Mean waiting times for Th cell cycle transitions, and cell apoptosis.

Table B.3: Event parameters of Th cell specific cytokine environment

Parameters Description Value

kp Cytokine production rate 10−1 nU.h−1.cell−1

kin Internalisation rate, when recep-

tor component at level 1

10−5 h.cell−1

kin2 Internalisation rate, when recep-

tor component at level 2 (IL-2)

10−3 h.cell−1

kd Degradation rate 0.138× 10−2 h−1

kTh Additional cytokine at local

pool

200 nU.cell

θ Cytokine receptor threshold 500 nU

Parameters of cytokines produced by Antigen presenting cells, and consumed

by Th cells. The cytokines simulated are IFNγ, IL-2, IL-4, IL-10, IL-21, IL-23 and

TGFβ.

58

Table B.4: Event parameters of Antigen presenting cell specific cytokine envi-

ronment

Parameters Description Value

kp Cytokine production rate 10−2 nU.h−1.cell−1

kin Internalisation rate, when recep-

tor component at level 1

10−5 h.cell−1

kd Degradation rate 0.138× 10−2 h−1

kA Additional cytokine at local

pool

200 nU

θ Cytokine receptor threshold 500 nU

Parameters of cytokines produced by Antigen presenting cells, and consumed

by Th cells. The cytokines simulated are IFNβ, IL-6, IL-12, IL-15 and IL-27.

Table B.5: Description of model parameters of Th cells and conjugations with

Antigen Presenting Cells (APC).

Parameters Description Value

V Volume of medium 10−9 Liters

kon Rate of contact between Th cells

and APCs

3.6× 10−10 Liters.h−1.cell−1

koff Average time to unproductive

dissociation

5 h

ksc Average time cell stays strongly

conjugated

2 h

59

60

Appendix C

Pseudo-code of decentralized and

institution implementation

61

Algorithm C.1 Simulation of decentralised decision making

Parameters:

m Number of slots at assembly site

n Number of different types of components at the building site

T Number of agents

SSA Proportion of short sighted agents in the population

γSSA Discount factor of short sighted agents

γFSA Discount factor of far sighted agents

RC The collective reward for piece completion

E Number of time-steps to evaluate population

1: Initialise the agents with the given discount factors

2: Initialise the assembly site, ∀i : Ci = φ

{Simulation steps}

3: for i = 1→ E do

4: {Randomly select one of the T agents}

5: a← RAND(T)

{Randomly select one of the n component types}

6: Fa ← RAND(n)

{The subroutine DECENTZ-POLICY returns where the component should

be placed}

7: j ← DECENTZ − POLICY (Cm, Cm−1 . . . C1, γa, RC, Fa, n)

8: Place component in slot j and accumulate immediate reward

9: if Assembly site has a completed piece then

10: Remove completed piece from assembly site

11: Update the total number of completed pieces

12: Distribute collective reward RC amongst contributing agents

13: end if

14: Check for availability of at least one free slot. If none available, empty all

the slots at the assembly site.

15: end for

16: return Number of pieces completed

62

Algorithm C.2 DECENTZ-POLICY: Function to determine the slot where com-

ponent is to be placed

Parameters:

Cm Component at slot m

Cm−1 Component at slot m− 1
...

C1 Component at slot 1

γ Discount factor of focal agent

RC Collective reward F Component brought by agent to assembly site

n Number of different types of components at the building site

1: {Call subroutine to compute the prospect vector (P) for the m building slots

at the assembly site, and component type F }

2: P ← PROSPECT (Cm, Cm−1 . . . C1, F, n)

3: for j = 1→ m do

4: uj ← j + Pj(RC × γ)

5: end for

{Return slot with maximum utility that is free}

6: return (argmaxx∈{1...m}(ux ∧ Cx = φ))

63

Algorithm C.3 PROSPECT: Function to compute the prospect vector (P) for the

assembly site. For each slot j, Pj indicates if placement of component F in slot j

would allow piece completion in the future. Pj = 1 if piece completion possible,

else Pj = 0

Parameters:

Cm Component at slot m

Cm−1 Component at slot m− 1
...

C1 Component at slot 1

F Component brought by agent to assembly site

n Number of different types of components at the building site

1: {Evaluation of prospect at each of the slots}

2: for slot = m→ 1 do

3: Pslot ← 0

4: if Cslot 6= φ then

5: {Current slot is not available. We set its prospect to 0 and move onto next

slot}

6: Continue to next slot

7: end if

{We now check if succeeding components can be placed to complete the

piece}

8: if Components F + 1→ n can not be placed after the component F then

9: {Incorrect components are present. The piece cannot be completed.}

10: Continue to next slot

11: end if

{We now check if preceding components can be placed to complete the

piece}

12: if Components 1→ F − 1 can not be placed before the component F then

13: {Incorrect components are present. The piece cannot be completed.}

14: Continue to next slot

15: end if

16: Pslot ← 1

17: end for

18: return P

64

Algorithm C.4 Simulation of Institution decision making

Parameters:

m Number of slots at assembly site

n Number of different types of components at the building site

T Number of agents

AF Assembler fee

RC The collective reward for piece completion

E Number of time-steps to evaluate population

1: Initialise the set of waiting agents W = φ

2: Initialise the assembly site, ∀i : Ci = φ

{Initialisation of ordered list Q used by assembler to store components needed

for piece completion}

3: Q← φ

{Simulation steps}

4: for i = 1→ E do

5: {Search the set of waiting agents W for a required piece, i.e. one that is not

already in the list Q}

6: if ∃i ∈ W : Fi /∈ Q then

7: W ←W − i

8: Q← Q+ Fi

9: Fi ← φ

10: Continue to next stimulation step

11: end if

12: {Randomly select one of the available agents}

13: a← RAND(T − length(W))

{Randomly select one of the n component types}

14: Fa ← RAND(n)

{Check if component Fa is already in set Q, i.e. is it needed for piece com-

pletion}

15: if Fa /∈ Q then

16: Q← Q+ Fa

17: Fa ← φ

18: else

19: {Add the agent to the set of agents waiting at the assembler}

20: W ←W + a

21: Continue to next stimulation step

22: end if

{The subroutine INST-POLICY determines the action of the assembler}

23: Call subroutine INST − POLICY (Q,m, n)

24: end for

25: return Number of pieces completed

65

Algorithm C.5 INST-POLICY: Function to determine the action of the assembler

Parameters:

Q Ordered list components

m Number of slots at assembly site

n Number of different types of components at the building site

1: if Q = {1, 2 . . . n} then

2: {Empty Q into the assembly site in slots {Cm, Cm−1 . . . Cm−n+1}}

3: {Cm, Cm−1 . . . Cm−n+1} ← Q

4: Q← φ

5: Simultaneously award contributing agents their individual ‘immediate’ re-

ward (RI =slot index) and the common collective reward (RC − AF)

6: Increment number of pieces completed

7: Empty the assembler i.e., remove the completed piece

8: end if

66

Bibliography

Bause, F. and Kritzinger, P. S. (2002). Stochastic Petri Nets - An Introduction to the

Theory. Friedr. Vieweg &Sohn Verlag, Braunschweig/Wiesbaden (Germany),

second edition.

Brown, M. (1978). Implementation and analysis of binomial queue algorithms.

SIAM Journal on Computing, 7:298–319.

Butcher, J. (2003). Numerical methods for ordinary differential equations, chapter 23.

John Wiley & Sons, second edition.

Cassandras, C. G. and Lafortune, S. (2008). Introduction to Discrete Event Systems.

Springer, second edition.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction to Algo-

rithms. MIT Press, second edition.

Correll, N. and Martinoli, A. (2011). Modeling and designing self-organized ag-

gregation in a swarm of miniature robots. International Journal of Robotics Re-

search, 30(5):615–626.

Evans, M., Hastings, N., and Peacock, B. (2000). Statistical Distributions, chap-

ter 27, pages 134–136. John Wiley & Sons, third edition.

Garg, A., Mohanram, K., Cara, A., DeMicheli, D., and Xenarios, I. (2009). A net-

work model for the control of the differentiation process in Th cells. Bioinfor-

matics, 25:101–109.

Garg, A., Xenarios, I., Mendoza, L., and DeMicheli, D. (2007). An efficient method

for dynamic analysis of gene regulatory networks and in silico gene pertur-

bation experiments. In Proceedings of the 11th annual international conference on

Research in computational molecular biology, pages 62–76. Springer-Verlag.

67

Gibson, M. and Bruck, J. (2000). Efficient exact stochastic simulation of chemical

systems with many species and many channels. J. Phys. Chem. A, 104:1876–

1889.

Gillespie, D. (1976). A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. Journal of Computational Physics,

22:403–434.

Harrington, L., Hatton, R., Mangan, P., Turner, H., Murphy, T., Murphy, K., and

Weaver, C. (2005). Interleukin 17-producing CD4+ effector T cells develop via

a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 6:1123–

1132.

Hauert, S., Zufferey, J., and Floreano, D. (2009). Evolved swarming without posi-

tioning information: an application in aerial communication relay. Autonomous

Robots, 26(1):21–32.

Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell devel-

opment by the transcription factor Foxp3. Science, 299:1057–1061.

Hosken, N., Shibuya, K., Heath, A., Murphy, K., and O’Garra, A. (1995). The

effect of antigen dose on CD4+ t helper cell phenotype development in a t cell

receptor-αβ-transgenic model. The Journal of experimental medicine, 182:1579–84.

Jones, D. (1986). An empirical comparison of priority-queue and event-set imple-

mentations. Communications of the ACM, 29:300–311.

Leon, K., Lage, A., and Carneiro, J. (2003). Tolerance and immunity in a mathe-

matical model of t-cell mediated suppression. J. Theor. Biol., 225:107–126.

Martinoli, A., Easton, K., and Agassounon, W. (2004). Modeling swarm robotic

systems: A case study in collaborative distributed manipulation. Int. Journal of

Robotics Research, 23(4):415–436.

Mendoza, L. (2006). A network model for the control of the differentiation process

in Th cells. Biosystems, 84:101–114.

Mermoud, G., Upadhyay, U., Evans, W. C., and Martinoli, A. (2010). Top-Down

vs Bottom-Up Model-Based Methodologies for Distributed Control : A Com-

parative Experimental Study. In 12th International Symposium on Experimental

Robotics, New Delhi, India. Springer Tracts in Advanced Robotics.

68

Mosmann, T. and Coffman, R. (1989). Th1 and Th2 cells: different patterns of lym-

phokine secretion lead to different functional properties. Annu Rev Immunol,

7:145–173.

Murphy, E., Shibuya, K., Hosken, N., Openshaw, P., Maino, V., Davis, K., Murphy,

K., and O’Garra, A. (1996). Reversibility of t helper 1 and 2 populations is lost

after long-term stimulation. The Journal of experimental medicine, 183:901–13.

Naldi, A., Carneiro, J., Chaouiya, C., and Thieffry, D. (2010). Diversity and plastic-

ity of Th cell types predicted from regulatory network modelling. PLoS Comput

Biol.

Nembrini, J., Winfield, A. F. T., and Melhuish, C. (2002). Minimalist Coherent

Swarming of Wireless Networked Autonomous Mobile Robots. Proceedings of

the seventh international conference on simulation of adaptive behavior on From ani-

mals to animats, pages 273–282.

O’Grady, R., Groß, R., Christensen, A., and Dorigo, M. (2010). Self-assembly

strategies in a group of autonomous mobile robots. Autonomous Robots, 28:439–

455. 10.1007/s10514-010-9177-0.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., and Tummolini, L. (2004).

Coordination artifacts: Environment-based coordination for intelligent agents.

In 3rd international Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2004), pages 286–293, New York, NY, USA.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the

art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434.

Park, H., Li, Z., Yang, X., Chang, S., Nurieva, R., Wang, Y., Wang, Y., Hood, L.,

Zhu, Y., Tian, Q., and Dong, C. (2005). A distinct lineage of CD4 T cells regulates

tissue inflammation by producing interleukin 17. Nat Immunol, 6:1133–1141.

Parker, C., Zhang, H., and Kube, C. (2003). Blind bulldozing: multiple robot nest

construction. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.

2003 IEEE/RSJ International Conference on, volume 2, pages 2010–2015.

Pereira, J. N., Silva, P., Lima, P. U., and Martinoli, A. (2011). Formalizing Insti-

tutions as Executable Petri Nets for Distributed Robotic Systems. In Lenaerts,

69

T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., and Doursat, R., editors,

Advances in Artificial Life, ECAL 2011, pages 646–653, Paris, France. MIT Press.

Silva, P. (2010). Institutional approaches to the micro-macro link within human

societies. Technical report, Fundação para a Ciência e a Tecnologia.

Stamatakis, M. and Zygourakis, K. (2010). A mathematical and computational

approach for integrating the major sources of cell population heterogeneity. J.

Theor. Biol., 266:41–61.

Stirling, T., Wischmann, S., and Floreano, D. (2010). Energy-efficient indoor

search by swarms of simulated flying robots without global information.

Swarm Intelligence, 4(2):21–32.

Tarapore, D. and Carneiro, J. (2010). From bio-inspired to institutional-inspired

collective robotics: Epigenetic mechanisms controlling collective configura-

tions in simulated Th cell populations. Technical report, Fundação para a Ciên-

cia e a Tecnologia.

Tarapore, D. and Christensen, A. (2010). From bio-inspired to institutional-

inspired collective robotics: Simulated and real multirobot experiments. Tech-

nical report, Fundação para a Ciência e a Tecnologia.

Tummolini, L. and Castelfranchi, C. (2006). The cognitive and behavioral me-

diation of institutions: Towards an account of institutional actions. Cognitive

Systems Research, 7(2-3):307–323.

Vuillemin, J. (1978). A data structure for manipulating priority queues. Commu-

nications of the ACM, 21:309–315.

Waibel, M., Keller, L., and Floreano, D. (2009). Genetic Team Composition and

Level of Selection in the Evolution of Cooperation. IEEE Transactions on Evolu-

tionary Computation, 13(3):648–660.

Winfield, A. F. T., Liu, W., Nembrini, J., and Martinoli, A. (2008). Modelling a

wireless connected swarm of mobile robots. Swarm Intelligence, 2(2-4):241–266.

Wolfram Research, I. (2008). Mathematica Edition: Version 7.0. Wolfram Research,

Inc.

70

Zykov, V., Mytilinaios, E., Adams, B., and Lipson, H. (2005). Self-reproducing

machines. Nature, 435:163–164.

71

