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a b s t r a c t

The target searching problem is a situation where a formation of multi-robot systems is set to search for
a target and converge towards it when it is found. This problem lies in the fact that the target is initially
absent and the formation must search for it in the environment. During the target search, false targets
may appear dragging the formation towards it. Therefore, in order to avoid the formation following a
false target, this paper presents a new methodology using the Takagi–Sugeno type fuzzy automaton (TS-
TFA) in the area of formation control to solve the target searching problem. The TS fuzzy system is used
to change the formation through the modifications in the states of the automaton. This change does not
only switch the rules and therefore the state of each robot, but also the controllers and cost functions. This
approach amplifies the versatility of the formation of mobile robots in the target searching problem. In
this paper, the TS-TFA is presented and its implications in the formation are explained. Simulations and
results with real robot are presented where it can be noticed that the formation is broken to maximize
the perception range based on each robot’s observation of a possible target. Finally this work is concluded
in the last section.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Fuzzy systems and automatons are often applied in robotics.
Several research proposals use fuzzy systems to control, navigate
or evaluate robot systems and the approach most frequently used
is the Mamdani Fuzzy System [1–4]. Moreover, robotic soccer
has become a good work-bench for testing artificial intelligence
algorithms and it plays an important role in the progress of the
intelligent control algorithm field [5–8]. In order to avoid deviating
the formation from following a false target, this paper presents
the use of a recently presented technique, the Takagi–Sugeno
Type Fuzzy Automaton (TS-TFA) [9]. The TS-TFA selects the roles
(behaviors) applied to the formation control of three 5 dpo soccer
robots [10]. These robots, usually participants of RoboCup [11],
are used here as a platform to demonstrate the performance
of a formation during the search of a target when there is the
commuting absence/presence of this target. The problem here
lies in the fact that the target is initially absent. During the
target search, false targets may appear dragging the formation
towards it. Therefore, as a proposed solution for this problem,
the fuzzy automaton contains three states which are sufficient
in order to solve the problem in the proposed case of study. The
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fuzzy automaton does not only change the robots’ role but it
changes also the robots’ cost function or controller (depending
on the state change), while pursuing or searching for a target.
A static leader approach was chosen for this work; nevertheless,
the proposed contribution also works with a non-static leader
approach. Simulations and experiments with real robots will also
be presented in this paper.

The positioning of robots in a dynamic environment is
also another issue regarding changes of roles in multi-robot
systems [12,13]. In the work of Akiyama et al. [14], the authors
proposed a novel agent positioning mechanism for the dynamic
environments. They state that because the real-world problem is
generally dynamic, suitable positions for each agent should be
determined according to the current status of the environment.
Therefore, the authors in [14] formalized this issue with a map
from a focal point (like a ball position in a soccer field) to a
desirable positioning of each player agent. Furthermore, they
proposed a method to approximate this map using Delaunay
Triangulation. The performance of the method was evaluated in
RoboCup Soccer Simulation environment and compared to other
function approximationmethods such as the Normalized Gaussian
Network.

Furthermore, Stone and Veloso [15] introduced periodic team
synchronization (PTS) domains as time-critical environments in
which agents act autonomously with low communication, but in
which they can periodically synchronize in a full-communication
setting. The two main contributions of this article were a flexible
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team agent structure and amethod for inter-agent communication
in domains with unreliable, single-channel, low-bandwidth com-
munication. In the said paper, homogeneous agents can flexibly
switch roles within formations, and agents can change formations
dynamically, according to pre-defined triggerswhich are evaluated
at run-time. This flexibility increases the performance of the over-
all team. Our teamwork structure further includes pre-planning for
frequent situations. Second, the novel communication method is
designed for use during the low-communication periods in PTS do-
mains. Finally, they fully implemented both the flexible teamwork
structure and the communication method in the domain of sim-
ulated robotic soccer, and conducted controlled empirical experi-
ments to verify their effectiveness.

Regarding the dynamic change of roles, the work of Reis
et al. [16], presents an interesting approach. In their paper, they
proposed an approach for coordinating a team of homogeneous
agents based on a flexible common Team Strategy as well as on
the concepts of Situation Based Strategic Positioning and Dynamic
Positioning and Role Exchange. The authors also introduced an
Agent Architecture including a specific high-level decision module
capable of implementing this strategy. Their proposal was based
on the formalization of the idea of what a team strategy is for
competing with an opponent team having opposite goals. Agent’s
reactivity was also introduced for appropriate response to the
dynamics of the current situation. However, in their approach
this was done in a way that preserves team coherence instead of
permitting uncoordinated agent behavior.

Changing roles in a multi-robot formation system requires a
high level of navigation and control. Role assignment, according to
the robot’s features, is a crucial step in the coordination ofmultiple
heterogeneous robots. The research of [17] presents a strategy
for picking heterogeneous players and forming a soccer team
in the RoboCup simulation environment, which is a multi-robot
coordination research platform. Using fuzzy evaluation and fuzzy
inference, the authors identify the most suitable role in a soccer
team for a given heterogeneous robot. In the games, the team that
possessed this strategy as its bases showed a significantly better
performance when compared to a team based on the previous
hand-tuned solution.

In [18], the authors focus on theMiddle Size Soccer Robot league
(MSL) as well as on new hierarchical hybrid fuzzy methods for
decision making and action selection of a robot. In article [18], the
behavior of an agent was introduced, implemented and classified
in two layers, the Low Level Behavior and theHigh Level Behavior. In
phase one, the robot’s situation is checked in order for a decision
to bemake on how to perform the required behavior. In the second
phase, the team strategy, team formation, robot’s role and the
robot’s positioning system are introduced. A fuzzy logic approach
is adopted to provide the player with the best position to move
based on the information given by the current state.

In all previously mentioned approaches it is assumed that the
ball (target) is in the group observation range, where at least one
robot is seeing the target. This situation does not occur in the
target searching problem. To solve this problem, the TS-TFA was
proposed and implemented. To describe the TS-TFA implemented
here, this article is organized in the following order: The next sec-
tion presents the state machine that represents the robot’s possi-
ble behavior. Section 3 presents the TS-Type Fuzzy Automaton. The
problem is formulated in the following section and in Section 5 the
results obtained both in simulation and with real robots are pre-
sented. Finally, the conclusion is presented in the last section.

2. The state machine

The TS-TFA combines fuzzy sets and automaton theory. In
one of the most popular applications of the automaton theory in
Fig. 1. Robot state machine.

robotics, a state machine is used to define a high level control (or
navigation). This navigation system is based on the robot’s change
in behavior (e.g. changing from a standstill state to amoving state).
In this paper, the multi-robot system performs a search and track
task of a target (ball). In this task, the ball can be within the robot’s
sensor range or not. Therefore, the multi-robot system changes its
behavior from three states that can be seen in the state machine
shown in Fig. 1.

To better understand the TS-FSA implications, the state
machine that governs the robots’ behavior has to be explained first.
Here, a Deterministic Finite Automaton composed of three states
governs the behavior of the robots in the target searching problem.

Therefore, consider the State Machine SM = (Q , Σ, Φ,Q0, F)
which can be seen in Fig. 1, where Q is the set of all states,
Σ is the input alphabet, Φ is the state-transition function that
correlates the alphabet with the transition between states, Q0 is
the set of initial states and F is the set of final states. The following
assumptions are made:

1. Q := {Formation, Search, Search Follower}
2. Σ := {a, b, c}
3. Φ := QxΣ → Q
4. Q0 := Q
5. F ⊆ Q .

Given Z as the evaluation of the situation generated by the
fuzzy system, and L as the subscript identifying a robot n (where
1 ≤ n ≤ N and N is the total number of robots in formation)
chosen to be the leader, the values for Σ are:a, If Z = 1
b, If Z = 0; n, ∀ n ≠ L
c, If Z = 0; n, ∀ n = L.

(1)

It is also known that Q0 = Q and F = Q . The Formation state
is when the robot sees the target and starts moving towards it for
improved observation and tracking. The Search state is when the
leader robot (n = L) cannot see the ball and starts the procedure to
search for a target, moving around the soccer field. The last state is
the Search Follower applied to any robot where n ≠ L that cannot
see the target. When the Search Follower is applied, the robot
starts following robot L. In the Formation state, the robot uses the
nonlinear model predictive controller (NMPC) [19]. This controller
minimizes the cost function that dictates the robot’s behavior and
penalizes it if the formation does not perform as expected. When
the Formation state is activated, the robot visualizes the target
as a leader and starts moving towards it. The final position of
the formation (in a three robot case) should put all of the robots
around the ball, forming a 120° angle between them when the
ball is not moving. In the Search Follower state, the robot also
uses an NMPC but with a different cost function that considers the
leader robot and not the target, thus it moves towards the leader
robot. Finally, in the Search state, the robot changes to a normal



T.P. Nascimento et al. / Robotics and Autonomous Systems 61 (2013) 115–124 117
reactive controller [20] using the global path planner A∗ [21] to
move around the field.

The aim of this work is to use the resulting Output State value
to change the state of the robot. The robot formation possesses
three states, as previously seen. These three states are enough to
solve the target searching problem where the change between
absence/presence of a target becomes an issue. This is one of the
main differences between this approach and the one in [9], where
the authors use the Output State as a linear function instead of a
value. In this paper the TS-fuzzy is simplified and instead of having
an output fuzzy function, it has an output state. Therefore, if the
resulting output state value is equal to 1, the resulting state is
Formation(F), whereas, if the value is equal to 0 its resulting state is
either Search(S) or Search Follower(SF) depending on the value of Z
from robot n, where n is the robot’s number. If the robot’s number
is the chosen one to be the leader (n = L) then the final statewill be
Search(S). If n ≠ L, then the final state will be Search Follower(SF).
This interaction can be seen in the look-up table below. The look-
up table is a concise representation of the TS-TFA’s behavior with
respect to the state transitions defined through the dominant crisp
states.

3. The Takagi–Sugeno type fuzzy automaton

Tracking the status of an event-driven, large control system
is a difficult problem. These systems often encounter unexpected
roadblocks in an uncertain environment. The use of a fuzzy
automaton offers an effective approximation method to model
continuous and discrete signals in a single theoretical framework
using the combination of two techniques: the Automaton Theory
and Takagi–Sugeno Fuzzy Systems. A Max–Min automaton can
successfully model a cluster of relevant states when a decision
must be made on the next state of a goal path at a supervisory
level. However, to provide analytical proof for stability and other
key properties of a fuzzy controller, a Takagi–Sugeno (TS) model is
preferred. Finally, in [9] a TS-type fuzzy automaton is introduced.

The fuzzy automaton can remain in different fuzzy states
simultaneously, to a certain degree in each. These degrees are
defined by a state membership function. For each fuzzy state there
is just one dominant (crisp) state forwhich the statemembership is
1 (full membership). Each fuzzy state is associatedwith a linguistic
label for inference. For each fuzzy state there is a fuzzy set that has
a state membership degree greater than 0 in that fuzzy state [9].

The transitions between fuzzy states are based on the
transitions defined between their dominant crisp states. There is
an underlying Boolean finite state machine that implements the
fuzzy automaton. The states of this Boolean automaton are the
dominant crisp states of the fuzzy automaton. In the TS-TFAmodel,
the Takagi–Sugeno version of the IF THEN rules are adopted [9].
Therefore,

R : If x1 is A1, . . . , xk is Ak then Z = gSk (2)

and g is a linear function that was defined in this work to assume
only two values

gSk = 0 or gSk = 1. (3)

In each crisp state Sk the final output ZSk is calculated according
to

[ZSk = Z i
Sk] = (Ai

1(x
0
1) ∧ · · · ∧ Ai

k(x
0
k)) ∧ [Ri

] (4)

ZSk =


[ZSk = Z i

Sk] × Z i
Sk

[ZSk = Z i
Sk]

(5)

where [·] means the truth value of proposition ·, the ∧ operator
is implemented as min and A(x0) stands for the grade of
membership of x0 in fuzzy setA. For simplicity, [Ri

] = 1 is assumed.
Furthermore, × means a scalar multiplication. The notion of the
composite output Z∗ is introduced to reflect the contribution of the
output values devised from the Takagi–Sugeno linguistic models
that are attached to crisp states to the final output in a fuzzy state.
Let the TS-TFA be in a fuzzy state SFk, then

Z∗

k =
βk
1ZS1 + · · · + βk

pZSp
i

βk
i

(i = 1, . . . , p). (6)

It is clear from Eq. (6) that only crisp states that have greater
than 0 degrees of membership in fuzzy state SFk contribute to the
final output. Therefore, a TS-TFA automatonwith p states is defined
as follows [9].

SFk : Sk, gSk (7)
RS = TS(XF , ZS) (8)

G =

β1
1 · · · β1

p
... · · ·

...

β
p
1 · · · βp

p

 (9)

Z∗
= TS(X0

F , RS,G) (10)

XT is TRUE if XA ≥ XAT (11)
XB = B(XF ) (12)
YB = fy(XB,WB, XT , yB) (13)

UB = fu(XB,WB, XT , yB) (14)

where SFk stands for fuzzy state k, Sk represents crisp state k and
gSk is the state membership function associated with Sk(k =

1, . . . , p). βk
1, . . . , β

k
p stand for the degrees of state membership

function gSk.G stands for thematrix of statemembership functions.
The computational algorithm for Eq. (10) is given by Eqs. (4)–(6).
Finally, X0

F stands for inputs values evaluated by the member
function of the fuzzy sets (A). The variables WB and XA stand
for two-valued (Boolean) and analog inputs with associated XAT
threshold values, respectively. A threshold comparator module
compares the value of each analog signal with its associated
threshold value to set the corresponding XT signal as true or false.
UB stands for two-valued (Boolean) outputs. XB, YB and yB stand for
two-valued Boolean inputs, next states and the present states of
the state variables, respectively.

4. Problem formulation

In order to avoid deviating the formation from following a false
target, we present the use of the TS-TFA technique to select roles
applied to formation control of a multi-robot system composed
of three 5 dpo soccer robots [10]. The fuzzy automaton will not
only choose the robot’s role, it will also select the robot’s cost
function or controller (depending on the state change), while
pursuing or searching for a target. In the 5 dpo robot soccer team,
the architecture of each robot is composed of a Coach (a state
machine that changes the robot’s behavior) inside each computer
that runs parallel with the Dec (controller) and the HAL (vision
system). These systems are explained in more detail in [10]. The
state machine used that governs the robot’s behavior and a brief
explanation of the TS-TFA theory have been presented to outline
the proposed solution. In this work, Intelligent State Changing is
applied in the Formation Control of Multi-Robot Systems to solve
the target searching problem. To accomplish this task, a TS-TFA
was applied using the state machine previously explained in this
paper. This state machine is governed by a set of rules extracted
from the TS fuzzy system. The switch between states performed
by the fuzzy rules assumes that each state in the state machine is a
possible scenario that the robotwould be in each instant of time. In
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Fig. 2. Membership functions and surface.
turn, each scenario is the result of a fuzzy rule. Finally, each fuzzy
rule performs a weighted calculation based on the measurements
from the robots distance to the target and the robot’s quality of the
target perceptionmeasurements. In this TSmodel the implications
(TS fuzzy rules) are as follows:

R1 : If x1 is NV and x2 is HT then Z = 0
R2 : If x1 is NV and x2 is TR then Z = 0
R3 : If x1 is NV and x2 is ST then Z = 0
R4 : If x1 is VR and x2 is HT then Z = 1
R5 : If x1 is VR and x2 is TR then Z = 0
R6 : If x1 is VR and x2 is ST then Z = 0
R7 : If x1 is VM and x2 is HT then Z = 1
R8 : If x1 is VM and x2 is TR then Z = 1
R9 : If x1 is VM and x2 is ST then Z = 0

(15)

where x1 is the fuzzy input that represents the quality of the robot
camera’s visual on the target. A camera perception quality decay
range that stretches from −100 to 1000 was created for the 5 dpo
robot soccer team based on the number of pixels present in the
target’s visualization that represent the target [10]. Moreover, the
input x2 is the confidence in which this observation is made with
respect to the distance between the robot and the estimated target
position. If the robot is near the target, itmeans that its observation
has high confidence and if it is far, it has low confidence. The
visibility distance usually varies from 0 to 10 m (maximum) and
this is the range of confidence in estimation.

Each robot in the formation measures the position and speed
of the ball (the state of the ball) in local frame. This information
is sent to the Coach software that is located in a central computer
andmerges the information originated from the robots into a single
ball state in the world frame. Afterwards, that is shared among
the robots in the formation through wireless communication.
All robots’ poses are also shared throughout the formation. It is
assumed that the merging of the ball position is performed using
Smith and Cheeseman’s formulation [22] and it provides the fused
data of the ball speed and position, as well as the quality of this
data. In each rule, theweight given to eachmeasurement (distance
of quality of perception) can be seen through a set of membership
functions, which in turn can be seen in 2.

4.1. Membership functions

The membership functions can be seen in Fig. 2. These
membership functions are designed by considering the quality
decay of target perception from the robot’s vision software (HAL).
It is important to notice that the present work does not focus on
the vision system. The vision system delivers the blob of the target
as a set of pixels with a center point that in turn is translated into
a quality decay range. This range is used to create the membership
functions to evaluate the quality of the observed target [23,24].

The Trust (confidence) function represents the reliability in
the quality of the target’s observation based on the distance
between the robot and this observed target. Therefore, the Trust
(confidence) function represents the reliability of the vision based
on the distance to the target. If the distance is too far, the trust
(confidence) is low but if it is close, the trust (confidence) is
high. This membership function is rated in meters of distance. The
membership functions are adjusted to the maximum performance
by setting the functions proportionally, as per the implementation
in real robots. In Fig. 2 for example, by analyzing the Trust function
based on the robot’s vision, it is noticeable that the value that
separates the state of seeing and not seeing the target is 5. In the
Quality function of target perception, the value is 450. In the Trust
function, between 3 and 7m the confidence in the visual is regular,
for less than 3 m the confidence is strong and any measurement
above 7 m is not considered. The same situation happens with the
quality function of target perception.

4.2. The problem example

The example bellow was created to better understand the
contribution of this paper and only to illustrate a situation where
the existence of a false target would influence the formation’s
behavior. Here, robot 1 is the leader robot, while robots 2 and 3 are
the followers. Robots 1, 2 and 3 depart from coordinates (4.5, −3),
(4.5,−1) and (6.5,−3), respectively. To simulate the appearance of
a false target during the search process, the ball was initially placed
in the coordinates (2, 2.9). After a while during the simulation the
ball is changed to the coordinates (−4.5, 6) where the ‘‘true’’ ball
would be located.

This simulates a situation where the robot or the whole
formation sees a false ball and, getting closer to the observed
object, discards it as the target (either by the object format or
any other vision process that occurs with the color segmentations
process used to recognize the ball). In this case, without the
proposed approach, the formation would be as shown in Fig. 3.
Note that in this example, one of the robots sees the false target
and sends the information to the other robots. Then, all robots
in formation try to converge towards this false target. When the
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Fig. 3. The problem simulation: Formation behavior without the TSTFA approach.

Fig. 4. The solution simulation: Formation behavior with the TSTFA approach.

formation approaches the observed object, the robots consider this
as a false target and have to restart the search once more.

However, when applying the proposed technique, the behavior
of the formation is improved. Instead of all the formation
converging to a false target, only the robot that sees it weights
between the quality of its observation and the distance that it is
from the observed object. Then, this robot breaks itself from the
formation trying to converge towards the possible target while the
other robots keep searching. By analyzing Fig. 4, it can be seen
that when the observed object is considered as a false target, the
robot converges back to the formation which was still searching
for a ‘‘true’’ target. Once the formation finds the ‘‘true’’ target, it
converges successfully.

5. Results

The results are presented in two sections. The first outlines
the simulation results using the SimTwo simulator [25]. These
simulations were created with three omnidirectional 5 dpo
soccer robots moving at a maximum velocity of 0.7 m/s. In
the simulations the robots should achieve a final formation
configuration around the ball, forming a 120° (degree) angle
between them. The three simulations presented here are three
Table 1
Membership Functions-State Transitions. The values NV, VR and
VM in the Quality (q) membership function means, respectively,
Not Visible, Visible Reasonably and Visible Much, and HT, TR and
ST in the Trust (t) membership function mean High Trust, Trust
Reasonably and Small Trust, respectively.

q t
HT TR ST

NV S/SF S/SF S/SF
VR F S/SF S/SF
VM F F S/SF

different starting situations: Simulation 1: Robot 3 is relatively near
to the target and robots 1 and 2 are relatively far from the target,
Simulation 2: Robot 2 is relatively near to the target and robots 1 and
3 are very far from the target and Simulation 3: Robots 1, 2 and 3 are
very far from the target. Furthermore, the Section 5.2 presents the
results of the experiment with real robots, where the real 5 dpo
soccer robots were used. The experiment was only conductedwith
the last simulation case to validate this theory. As a safetymeasure,
the maximum robot velocity allowed was 0.7 m/s.

5.1. Simulations

This section presents all three simulations. It is important to
remember that here the ball is always stopped, the robots move
at velocities of up to 0.7 m/s and robot 1 is the robot leader.

5.1.1. Simulation 1
In this simulation, the ball was placed at the coordinates (2, 3.5)

and robots 1, 2 and 3 were placed at the coordinates (4.3, −3.1),
(4.3, −1.8) and (4.3, 1.6), respectively. All robots have an initial
θ = 270° in world frame. Fig. 5 shows that robot 3 maintained
its initial state Formation and moved towards the ball using the
NMPC, without ever changing its state. Then, robot 1 receives
Search as its initial state with an A∗ path planner and a reactive
controller and it kept this state until it reached the coordinates
(−3.2, 2.8) where its confidence was high enough to change its
state to Formation. Finally, robot 2 receives Search Follower as
its initial state with a NMPC controller with the cost function to
follow a leader. Meanwhile, as the formationmoves, robot 2 passes
through coordinates (3.5, −2) where it was close enough to the
target to change its state to Formation. If other robots see a target,
each robot weighs up the global quality of the ball perception and
its distance from the target. If the robot is too far from the target, it
will not change its state, as shown in Table 1. Here, the change in
state corresponds to a change in the controller.

By analyzing Fig. 5, it can be seen that there is no disturbance in
the robots’ trajectories or any presence of instability in the state
changes. The controller is the same but the cost functions are
different and once again, no instability could be noted. The distance
to the target and their path in an XY plot can be seen in Fig. 5,
respectively. The behavior of the robots in this situation canbe seen
in Fig. 6 where it is possible to see the change in states during each
instant taken from the Coach’s view of the simulations.

5.1.2. Simulation 2
Here, Fig. 7 shows, through the plot XY , that the ball was placed

at the point with coordinates (−5.3, 0) and robots 1, 2 and 3
were placed at the coordinates (4.3, −3.1), (−6.3, 0) and (4.3,
3.1), respectively. Furthermore, all robots have an initial θ = 90°
in world frame. Note in the XY plot from Fig. 7 that there is no
disturbance in the robot’s trajectory and there is no presence of
instability in the state change. In the distance graph from Fig. 7,
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Fig. 5. Simulation 1: Distance robot-ball and plot XY of the robots path.
Fig. 6. Simulation 1.
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Fig. 7. Simulation 2: Distance robot-ball and plot XY of the robots path.
Fig. 8. Simulation 2: Orientation of the robots.

it can be seen that the robot converged successfully towards the
target.

The XY plot from Fig. 7 demonstrates that robot 2 maintained
its initial state Formation and moved towards the ball using the
nonlinear model predictive controller (NMPC). Furthermore, robot
1 received Search as its initial state with an A∗ path planer and a
reactive controller and it maintained this state until it reached a
position where its confidence was high enough to change its state
to Formation (coordinates (1.1,−3)). It is important to note that the
change in state is also a change in the controller and no instability
could be seen in the robot’s path. However, the ‘‘irregularity’’ seen
in the path of robot 1 is due to the change in its orientation around
5 s after the start of the experiment, as it can be seen in Fig. 8. The
rotation is decided and governed by the low-level control system.

Finally, robot 3 receives Search Follower as its initial state and it
starts moving towards the robot leader using a NMPC with a cost
function to follow the leader. As it can be seen in Fig. 7, when robot
3 reached the point (0, −1), it places itself with enough distance
to the target in order to change its state to Formation. Here, the
controller is the same but the cost functions are different and once
again, no instability can be noticed.

5.1.3. Simulation 3
The last simulation case started with robots 1, 2 and 3 on one

side of the field placed at coordinates (4.3, −2), (4.3, 0) and (4.3,
2), respectively. Robot 1 is the leader robot here and the ball was
positioned at coordinates (−3, 1). Furthermore, all robots have an
initial θ = 270° in world frame. Note in Fig. 9 that there is no
disturbance in the robot’s trajectory and there is no presence of
instability in the state change.

By analyzing Fig. 9 this experiment shows that the robots
started performing the search for the target by moving around the
field. When robots 1 and 3 reached the coordinates (−0.4, −3.1)
and (−0.1, −1.4) respectively, they began to see the target, which
Fig. 9. Simulation 3: Distance robot-ball and plot XY of the robots path.
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Fig. 10. Real experiment: Distance robot-ball and plot XY of the robots path.
in turn changed the state of each robot. Therefore, these two robots
started the process of pursuing the target. At this instant robot 2
could not see the target yet. Meanwhile, robot 2 was a little bit
behind and continued looking for the target and following robot
1 until the group gained more confidence in the observation while
in turn robot 2 saw the target as well.

5.2. Results of the experiments with real robots

This case was similar to the last simulation case where
robot 1 was the leader and the search should be performed by
departing from an target absent state. However, as the real field
of experiments is small and the fact that the search routine makes
the robot leader perform a square path in the field independent
from its size the initial coordinates for robots 1, 2 and 3 were
respectively (3, −2), (3, 0) and (3, 2).

The small difference between this experiment and the last
simulation is that the robots depart with a greater distance in the
X axis which in turn does not represent any significant difference
for the comparison between simulation and real experiment.
Moreover, Fig. 10 shows the distance from the robot to the ball
during both states Search/Search Follow and Formation.

It is important to note that before changing to state Formation,
the quality of the target’s perception is affected by various vision
noises due to the large distance between the robot and its target
and the camera precision. This fact is demonstrated by the XY
plot and by the distance graph from Fig. 10, and it makes the
importance of this contribution more notable. In this experiment,
the robots started performing the search for the target by moving
around the field. When the robots reached a certain point in the
field (coordinates (0.2, −1.5) for robot 1 and (0.5, 0.2) for robot
3 which were the firsts to see the target as seen in Fig. 10), the
robots that reached this specific distance changed their state and
started to pursue the target. Meanwhile, robot 2 was a little bit
behind and continued looking for the target and following robot
1 until it saw the target as well. By analyzing the distance graph
in Fig. 10, the main difference between the simulation and the
real robot experiment are noticeable. Here, the variation in the
perception of the target can be seen while the robots are searching
and coincidentally approaching the target. It is the variation in
the quality of the perception that makes the fuzzy system discard
the ball positions. The point where the target is reasonably visible
is reached in approximately four seconds when it can also be
noticed that the perception quality has improved. The system
works rapidly and smoothly, preventing the robots from colliding,
which is possible at high velocity. However this is not the case
when vision perception is not of a high quality. The XY plot of
the movement of the robots is shown in Fig. 10. In this figure,
the positions of the ball do not signify that the target moved, they
only mean that the position of the target measured by the robots
was not precise until the robot approached the target. This lack
of precision in measurements makes the ball perception move in
this plot. The behavior of the robots in this situation can be seen in
Fig. 11.

6. Conclusion

This paper presented a new methodology, the Takagi–Sugeno
type fuzzy automaton (TS-TFA), applied to the formation control of
multi-robot systems to solve the target searching problem where
the formation is put to search for a target and they converge to
it when it is found. This problem lies in the fact that the target
is initially absent and the formation of a multi-robot system must
search for this target in the environment. During the target search,
false targetsmay appear. Therefore, in order to avoid the formation
following a false target, this paper presented the use of a recently
presented technique, the TS-TFA. This technique selects one of the
three roles applied to formation regarding the target searching
problem. The fuzzy automaton not only changed the robots’ roles
(automaton states) but it also changed the robots’ cost function or
controller (depending on the state change), while searching for a
target.

The TS-TFA was modified slightly in order to adapt to the
formation control theory with the leader-following approach.
From the simulations and the results with real robots it can
be noted that the formation is broken to maximize the percep-
tion range based on each robot’s observation of a possible tar-
get. It can also be noted that the change in the controller and
the change in the cost function do not make the system un-
stable in the representative cases presented. Finally, this appli-
cation can be generalized and the formation can consider all
sorts of environment applications, including an outdoor envi-
ronment where in many circumstances, a false target can be
found.

Appendix. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2012.10.011.

http://dx.doi.org/10.1016/j.robot.2012.10.011
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Fig. 11. Real experiment: Coach view.
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