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Wireless control as an enabling technology

* Internet * Remote sensing * Cyber-physical systems
* WWW * Monitoring environments * Critical infrastructures
* Ubiquitous computing * Wireless sensor networks * Humans-in-the-loop

Sensor Web Action Web

The Internet Monitoring storm petrels at Great Duck Island The smart energy grid
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Wireless sensor systems benefit from
* Lower installation and maintenance costs
* Increased sensing capabilities and flexibility
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Today’s industrial communication architecture
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Wireless sensor and actuator network architecture

* Local control loops closed over wireless multi-hop network

* Potential for a dramatic change:
— From fixed hierarchical centralized system to flexible distributed
— Move intelligence from dedicated computers to sensors/actuators
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Wireless control system

How to share common network resources while
maintaining guaranteed control performance?

Sensors Controllers Actuators
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Outline

Motivation

Wireless control system

Medium access for networked control

Hybrid control for hybrid medium access
* Communication-aware motion planning

Conclusions
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Medium access control

Data are lost if a radio channel is accessed by more
than one node within interference range

Controllers
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Where to take medium access decisions?

‘ Sensor node makes local decisions on when to communicate

Plant 1

Planti
Plant M
Network Wireless network

(IEEE802.15.4)

manager

Network manager allocates communication slots

Y
_| H
State . |
| feedback Estimator

Controller 1

Controlleri | Controller requests sensor data
Controller M I
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Is there a separation principle for
medium access-estimation-control?

Ramesh, Sandberg, Bao, J, 2009, 2010; Molin & Hirche, 2009, 2010

Stochastic control formulation

Plant:
Xk+1 = Axyg + Buy +wy,
Scheduler:

& = fill) € {0,1}

S

Iy = [t M A8
Controller:

U = gk(ﬂf)
Iy = [} {835 (]

Cost criterion:
N—1
J(f.8) =ElyQoxv + ¥ (! Quxs+ul Qous)]

s=0
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Certainty equivalence revisited

Definition Certainty equivalence|holds if the closed- y
loop optimal controller has the same form as the de-

terministic optimal controller with x; replaced by the
estimate £y, = E[x|IE].

- .
Theorem [Bar-Shalom-Tse] Certainty equivalence holds

if and only if E[(x; —E[xk|]If])2|]If] is independent of
past controls {u}’éfl (no dual effect).

Feldbaum, 1965; Astrédm, 1970; Bar-Shalom and Tse, 1974

State-based scheduler

Plant: X
Xk+1 = Axyg + Buy +wy, |
Scheduler:

8= filll) € {0,1)
S
Iy = [t M A8

Controller: u y sEssEEEEEEEEEEEEEE
(o
u = gk (Iy) C

Iy = [} {835 (]

Corollary The control uy for the optimal closed-loop system has a dual effect.

The separation principle does not hold for the optimal closed-loop system,
so the scheduler, estimator, and controller cannot be designed separately

Ramesh, Sandberg, Bao, J, 2009, 2010
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Symmetric scheduler

Proposition If the scheduler f = f(Zf;lT" A5~y _,) is a symmetric map:
e The CE controller is optimal

e The observer has low complexity

Supports threshold-based (Lebesque) sampling in scheduler (MAC)

] n ' —n-.“—

———
v

Observer-based

Controller

_.<x_
Ramesh, Sandberg, Bao, J, 2009, 2010

Outline

Motivation
Wireless control system

Medium access for networked control

Hybrid control for hybrid medium access

* Communication-aware motion planning

Conclusions




Hybrid MAC protocol

MAC protocol standards have both
contention-free and contention access periods

Contention-free period for TDMA scheduled communication

LR e e

|

’ Periodic superframe of N slots ‘

Contention access period for random CSMA communication
Lo m el

Cf,, real-time embedded systems literature: Kopetz’ time-triggered architecture; Benveniste’s LTTA; Sifakis etc

TDMA = Time division multiple access, CSMA/CA = Carrier Sense Multiple Access with Collision Avoidance

QPlant Qco
TDMA icati LSS
mmuni n
communicatio R e 1]
and control e el

* Leads to hybrid closed-loop system
A; B; - Opiant 0

a(t+1) = A(s(t)z(t),  A(eym) = | L. C:  Adj(Va,e)T OF,. - Ca(m)

lant * Con

0 B;(m) - Icon A;(m)

* Schedules for each loop can represented as automata
* Feasible overall schedules computed as intersections

of automata !5;{ g })} E n !E i % 9

else else else else

Alur, D'Innocenzo, J, Pappas, Weiss, 2009
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CSMA/CA mechanism of a node
in an IEEE 802.15.4 wireless network

Idle

° state
N\
\ CCA Backoff stage 1

Backoff stage m

I

Retransmission stage n

Park, Di Marco, Soldati, Fischione, J, 2009

— A transmitting node delays for a random
number of backoff periods in [0, 2™- 1],
where m,is the initial backoff exponent.

— If two consecutive clear channel assessments
(CCA) are idle, the node starts the
transmission and waits for an ACK

— If the channel is busy, the procedure is
repeated increasing the backoff windows
until a maximum backoff exponent m,

— After a maximum number of backoffs m the
packet is discarded.

— In case of collision the procedure is restarted
and repeated until a retry limit n

Cf., 802.11 model by Bianchi, 2000; Pollin et al, 2008; etc

Markov chain model of CSMA/CA

Park, Di Marco, Soldati, Fischione, J, 2009

Markov state (s,c,r)

— s: backoff stage
— c: state of backoff counter
— r: state of retransmission counter

Model parameters

— q,: traffic condition (q,=0 saturated)
— mg m, my, n: MAC parameters

* Computed characteristics
— o: busy channel probability during CCA1

— B: busy channel probability during CCA2
— P_: collision probability

* Validated in simulation and experiment
* Simplified model used for design

10/10/10
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CSMA/CA communication T ®

L

and control

Make communication decisions
based on state level crossings z

i
(IEEE802.15.4)

Leads to event-based control with : m
packet drops I .

Rstrom & Bernhardsson, 1999; Rabi, J, Johansson, 2008; Cervin & Henningsson, 2008; etc

Fixed threshold with impulse control

Event-detector implemented as fixed-
level threshold at sensor

Event-based impulse control better
than periodic impulse control

Wireless network

Periodic Control Event-Based Control

2 2
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t Astrém & Bernhardsson, IFAC, 1999
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System model and performance measure

Plant dl‘t = th + utdt, .’1‘(0) = X0,

Samplingevents 7 = {70.71,72,...}, I I

oo
|mpu|se control wu; = Z mmd (7—71) Wireless network
n=0

M oo

/ ZI{THSJ\]}(s(S—Tn) ds
[U——)

A li R, =limsu ! E
verage sampling rate /- = limsup

—

M—o0

1 M
Average cost J = limsup —IE [/ xfds}
- 0

Comparison between time- and control

o1 1
o 1
o0
1

2 3

R e |
T = A” gives equal average sampling rate for periodic control and
event-based control

Event-based impulse control is three times better than periodic
Rstrom & Bernhardsson, 1999

What about the influence of communication losses?

Is event-based sampling still better?

10/10/10
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Event-based control with losses

Theorem P
If packet losses are independent and identically ,,
distributed with probability p, ° ,MMM“
then level-triggered sampling gives i M
: W‘"\w’\f ‘

A% (5p+1)

o = 6(1—p)

Event-based control better than periodic control if loss probability
p < 0.25

Rabi and J, 2009

Communication
acknowledgements

P
If controller perfectly acknowledges packets to sensor,
event detector can adjust its sampling strategy

Let A(l)=VI+1Ag

where [ > 0 number of samples lost since last successfully
transmitted packet

Gives that E {ri'ﬂ - ri'} becomes independent of i.

Better performance than fixed A (/) for same sampling rate:

2 (- , 2 (1 =,
g1 _ A _(l—l—p) - A» (_l—l—ap) g
P 6(1l—p) — 6(1-p) P

Rabi and J, 2009
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Hybrid control for hybrid MAC

Plant M

Plant i

Utilize that hybrid MAC has both contention-free
period (CFP) and contention access period (CAP):

tsp = Matots X Lot

P \
k 1

Beacon P cap Beacon e

Example Disturbance rejection in plant 2

Control over CAP Control over CFP Control over CAP-CFP
Y2 ST s LY - Y2 .
L\\ E,s - E _s| -
U L]t i
il 111 oo [T, T T 1]
e ™™ L UL T LU LT L T
SN A W I i TN o SN (T TV TR TN TIRTTTRTIRIIVINIA LI A= Lol

Araujo, Ariba, ParkySandberg, J,2009

Wireless control of inverted pendulum

Interference node starts transmitting

Angle Sensor every 100 ms

bbb
Interference node starts transmitting
et e every 10 ms

i
N { —* Process

802.15.4

Pendulum suffers large oscillations — COntrO"er

* Sensor sampling period 25 ms
MOVIE * Protocol with retransmissions leads to
large delays during interference

10/10/10
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Outline

Motivation

Wireless control system

Medium access for networked control

Hybrid control for hybrid medium access

* Communication-aware motion planning

Conclusions

Indoor surveillance scenario

Katsilieris, Lindhe, Dimarogonas, Ogren, J, ICRA 2010

10/10/10
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Exploiting Multipath Fading

* Follow the reference position
* Maintain high link capacity

Lindhe & J, IEEE Wireless Comm. 2009, ICRA 2010

Multipath Fading

* Static fading: Nothing changes over time
* All reflections equally strong: Rayleigh fadin

10/10/10
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Multipath Fading

=|=t = -Mean (IN)

Received power (dBm)
1
o

20 40 60 80 100 120 140 160 180 200
Position (cm)

Rayleigh Fading
The SNR (v) is exponentially distributed:

fv(V)
f’y(’)’) = %6_7/r

3 v (dB)
-

Samples more than A\/2 apart are independent.

10/10/10
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Link Capacity Depends on SNR

1
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Capacity = packet reception rate:
c(v) = [1 - Q(7)]®B (B bits/packet)

Problem Formulation

A.\\

Stop&go procedure:

1. Drive at 2v,, for a time 7y

2. Stop and measure the SNR, v
3. Stand still for a time 75(«)

Problem:

max E{c} «———— Link capacity
Ts(')’)
st.E{rs} =1y

Var{r} < o2 } Reference tracking
Sy =

10/10/10
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Stop-Length Policies

Threshold policy
/

n
=)
T

@15*
2 Optimal policy
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Control Architecture

Feedback q
controller

Stop&go
controller

Estimator

@

>

e Stop&go controller uses 7s(v)

e Estimator for average SNR, I

e Feedback controller for reference tracking

Relative frequency

Model Validation
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Experiment Results
£ .
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Communication-aware motion planning

Assumptions:
- Static environment

- Rayleigh fading b
Stop&go procedure:
1. Drive for a time 74 Q-
2. Stop, measure the SNR, ~ ’L
0ify<
3. Stand still for a time 75(y) = { TS Tt
at, else \.

Architecture:
- Estimator for channel estimation
- Feedback controller for tracking and robustness

e

Result:
- Link capacity improvements up to 100%
- Stable tracking error

Outline

Motivation
Wireless control system

Medium access for networked control
* Hybrid control for hybrid medium access
* Communication-aware motion planning

* Conclusions
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Conclusions

* Wireless control is an enabling technology in many
emerging application domains

* Fundamental challenges related to
— event-driven, asynchronous, ad hoc wireless networking, vs

— time-driven, synchronous, sampled data control

* New control paradigms and system architectures
— E.g., communication-aware motion planning
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