W—-—-—————
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(c) Proper but not live.

‘the (d) Live but not proper.
eS8 (e) Neither proper nor live.
ngs.

6. Write a computer program to construct the reachability graph of a bounded,

ess marked Petri net model.

ure 7. Given the reachability graph of a bounded Petri net, write algorithms to

szz’ determine whether the Petri net is (a) proper and (b) live.

mce: 8. Construct a Petri net model of an AMS in which there are two machines

\ted M; and M,. Each part has to undergo two operations, onec on M; and the
other on My, in any order (M; followed by M, or vice versa). Assume that
a raw part is always available and neglect loading, fixturing, transporting,
etc. When a raw part finds both My and M, free, it will be assigned to M.
After finishing the first operation, the part will go to the next machine if it

o is available; otherwise it waits on the machine (thus blocking the machine)

IT) until the other machine becomes free and then moves to the other machine.

ems If a fresh raw part and an in-process part vie for a machine, the latter will be

] assigned the machine. Construct the reachability graph of the above model
S O

: and show that it is bounded, proper, and live.

9. Show that the PN model of a transfer line with no buffers in-between is a
| marked graph.

5.2 STOCHASTIC PETRI NETS

Classical Petri nets are useful in investigating qualitative or logical prop-

erties of concurrent systems, such as mutual exclusion, existence and ab-
- ‘ sence of deadlocks, boundedness, and faimess. However, for quantitative
performance evaluation, the concept of time needs to be added to the def-
inition of Petri nets. A natural way of introducing time into a PN is based
on its interpretation as a system model in which given a state (marking), a
certain amount of time must elapse before an event occurs (i.e., a transi-
f the tion fires). The event is the final result of some activity that is performed
by the system when it is in the situation specified by the marking. Time
is thus naturally associated with transitions, indicating that they can fire
some time after they become enabled. The choice of associating time with
transitions is the most frequent in the literature on timed PNs. It may, how-
ever, be noted that PNs with timed transitions are equivalent to PNs with
timed places. Several researchers such as Ramchandani [1973], Sifakis
[1977], and Ramamoorthy and Ho [1980] investigated the use of timed

ce of !
b

ries:

|
i
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Petri nets in which places or transitions were associated with dererministic
time durations. The analysis of such timed Petri nets (TPN5) is, however,
tractable only in the case of special classes such as marked graphs.

The idea of associating random time durations was first explored
independently by Natkin [1980] and Molloy [1981], and this was the
starting point for the emergence of stochastic Petri nets (SPNs) and their
extensions as a principal performance modeling tool. In this book, the
focus will be on SPNs rather than on deterministic timed Petri nets.
Also, we shall consider SPNs in which transitions rather than places are
associated with times.

Definition: An SPN is a sex-tuple (P,T,IN,OUT, My, F') where
(P,T,IN,OUT, My) is a Petri net and F is a function with domain
(R[Mo] X T), which associates with each transition in each reachable
marking, a random variable.

The above is a very general definition of an SPN. We shall call the
function F' as the firing function and the random variable F(M,t) for
M € R[My] and t € T as the firing time of transition ¢ in the marking
M. Thus the firing time of a transition in an SPN is in general marking
dependent. In an SPN, when ¢ is enabled in A/ , the tokens remain in
the input places of ¢ during the firing time of ¢ in Af. At the end of
the firing time, tokens are removed from the input places of ¢ and tokens
are deposited in the output places of . When a transition ¢ gets enabled,
we say t starts firing and when the firing time has elapsed, we say t has
finished firing or also often say ¢ has fired. 1t is, however, possible that
t gets disabled at some instant of time before finishing firing, due to the
firing of a conflicting transition.

In the SPN literature, most often only continuous random variables
have been employed. If only continuous random variables are used, a sig-
nificant ramification will be that no two concurrently enabled transitions
of an SPN can finish firing simultaneously. Also, we make the usual sim-
plifying assumption that these random variables are mutually independent.

If, in addition to random firing times, we allow zero firing times, then
we have an interesting class of SPNs, which will be discussed in the next
section. Also, there have been SPN proposals in which, besides random
or zero firing times, deterministic firing times are also allowed.

Definition: Let (P, T, IN, CUT, My, F') be an SPN. Let X (u) rep-




_
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stic resent the marking of the SPN at time v > 0 and let X (0) = My. Then

er, * {X (u): u >0} is a stochastic process which we shall call the marking
1 process of the SPN.

red Note that the state space of the marking process of an SPN is R [Mo],
the i the reachability set. The basic philosophy underlying the use of various
eir classes of SPNs in performance evaluation is the equivalence of their mark-
the ing process, under appropriate distributional assumptions, to a Markov or
ets. semi-Markov process with discrete state space. The typical steps in SPN-
are based performance evaluation include: (1) modeling the given system by

. an SPN, (2) generating the marking process, (3) computing the steady-
state probability distribution of the states of the marking process, and

(4) obtaining the required performance measures from the steady-state
ere ; probabilities. All steps in the SPN-based performance evaluation can be
am ' automated, and this constitutes an important reason for the popularity of
ble SPN-based performance modeling.
the | . . .
for ~ 5.2.1 Exponential Timed Petri Nets
ing ‘ The remainder of this section is devoted to the basic class of SPNs in
ing { which all firing times are exponentially distributed. For this reason we
1 in i shall call this class of SPNs exponential timed Petri nets (ETPNs).
| of 1 o
ens Definition: An ETPN is a sex-tuple (P, T,IN,OUT, My, F) in
led, which (P,T,IN,OUT, M;) is a Petri net and the firing function F :
has % (R[Mo] X T) — R associates to each transition ¢ in each reachable mark-
that j ing M, an exponential random variable with rate F (M, t).
the For the sake of convenience, we shall designate each transition in an

ETPN as an exponential transition and refer to F (M, t) as the firing rate
bles of £in M. A transition of an ETPN is usually represented by a rectangular
sig- bar in ETPN diagrams.
ons
im- | Example 5.8 \
ent. é Consider the manufacturing system of Example 3.24, which comprises a
then : f‘ingle NC machine that works on an inexhaustible supply of raw workpieces
next one at a time and produces finished parts according to resume policy or
lom discard policy. The sequence of activities in the above system can be

modeled by the ETPNs shown in Figure 54. The interpretation of the
various clements of these ETPN models is provided in Table 5.3. Note
rep- ' that in the initial marking shown, the machine is being set up for the next

e
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4 ®)

(a)
Figure 5.4 ETPN models for resume policy and discard policy

| part. For this initial marking, the rcachability set of each ETPN compriscs
Bt threc markings, and the reachability graphs are shown in Figure 5.5. The
three markings are:

My = (100) : Machine being set up for the next part
M, = (010) : Machine processing a part
M, = (001) : Machine failed, being repaired.

Note that the above markings are identical to the three states of the
Markov chain of Example 3.24.

Equivalence Between ETPNs and CTMCs

| Natkin [1980] and Molloy [1981] have shown that the marking process
i of an ETPN is a continuous time Markov chain (CTMC). This establishes a
H bridge between SPNs and Markov chairs. In the following discussion, we
outline a proof for showing the equivalence between an SPN and a CTMC.
The proof is presented in the form of two lemmata. In the first lemma,we
derive the transition probabilities for the states of the equivalent CTMC.

|
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Table 5.3 Description of the ETPN models of Figure 5.4

Places

1 : Machine being set up for the next operation
2 : Machine processing a workpiece

3 : Failed machine being repaired.

Exponential Transitions

1 : Setup operation

2 : Processing of a part by the machine
3 : Failure of the machine

4 : Repair of the machine.

Firing Rates
F(Af[,tl) = 83 F (ﬁ’f,‘lg) =P F(A"’[, 53) == f; F(A[, l./;) =T

Initial Marking
pr:1y pe:i0; p3: 0

s

V4

In the second lemma, we show that the sojourn states in the individual
states are exponentially distributed.

Lemma: Let (P,T,IN,OUT, My, F) be an ETPN. Given M;, M; €
R [Mo], there exists a specific probability a,; of reaching M; immediately
after exiting from M,;.

Proof: Let T; be the set of enabled transitions in M; and define:
Ti]-:{teT,«:M,;LMj}
There are two possibilities: T}; = ¢ and Tij # ¢. If T;; is empty, we have

that M; cannot be reached from M, in a single step and hence aj; = 0.
Now consider the case when T;; is non-empty. Let

Nj= ) F(Mit), A=Y F(Mty)

tx Er[‘(] thrI‘;

The probability of marking M, changing to M; is the same as the
probability that one of the transitions in the set T;; fires before any of
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(a) : (b)
Figure 5.5 Reachability graphs of ETPN models of Figure 5.4

the transitions in the set T~ T;;. Since the firing times in an ETPN are
mutually independent exponential random variables, it follows that the
required probability has the specific value given by

Aij

ai; =
A;

In the expression for a;j deduced above, note that the numerator is the
sum of the rates of those enabled transitions in M;, the firing of any of
which changes the marking from M; to Mj; whereas the denominator is
the sum of the rates of all the enabled transitions in M;. Also note that

a;; =1 1if and only if T}; = T;.

e

Example 5.9
Let us look at marking M; = (010) in the ETPN model of Figure 5.4(a).

Following the notation employed in the lemma above, we have

Ty = {to,t3}; Two={t}; Tn= ¢; Tz = {t3}




p
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M=p+ i Ao=p An=00 A =S

Thus we have

P . i
g = ———;  ayp = 0; a4 =

p+f ’ p+/

In fact, the matrix of transition probabilitics can be seen to be

60 1 0

: 2 g _.L
t | p+f ptf
4 | o 1 0

| Similarly, the matrix of transition probabilities for the ETPN model of
Figure 5.4(b) can be verified to be

0 1 0
. _f
‘1 P2 p+]

i 1 0 0

Note that the first of the above matrices was derived in Example 3.33.

Lemma: The sojourn time of anysreachable marking in an ETPN
(P,T,IN,OUT, My, F) is exponentially distributed.
5.4

PrOof: Let M; € R[My] and let T; be the set of enabled transitions in
M;. Suppose T is the subset of M; comprising all transitions, the firing
of any of which in M, would lead to a marking other than M;. Denote

> F(Mi.ty)

(PN are

|
|
that the }
|
|
|

€1

or s the The sojourn time in A, is a random variable given by

f any of

inator 18 min (EXP(F(M;,t)))

note that ; teel]
% Then by the mutual independence of the firing times, it follows thdt the
, sojourn time of M, is exponentially distributed with rate A’

ire 5.4(a).

Example 5.10

Considering again the ETPN models depicted in Figure 5.4, the sojourn
} ] times of the markings Mo, M;, and M, can be secen to be exponential
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random variables with rates s, p + f, and r, respectively.

Theorem: The marking process of an exponential timed Petri net is
a continuous time Markov chain.

Proof: Proof is immediate on applying the two lemmata above and
using the fact that the firing time random variables in an ETPN are all
mutually independent.

Note that the state space of the equivalent CTMC is the reachability
set R [Mp] of the ETPN. The transition rate from one marking to another
can be computed as follows. Let M; M; € R[M,]. For M; # M,, the
transition rate is given by

g; = Y F(Mh)

t€Ts;

where T;;, as usual, is the subset of enabled transitions in Af; such that

the firing of any transition in T}; leaves the marking process in M;. For
M; = M;, the transition rate is given by

qii = — Z qij
371

Example 5.11
The transition rate matrix (inﬁnitesimal generator) of the equivalent CTMC
of the ETPNs of Figure 5.4 can be respectively seen to be

—$ s 0 -8 s 0
p —+f) f|; p —(p+f) f
0 r —-r r 0 -7

Note that the above matrices are identical to the ones in Example 3.28. The
performance analysis of these CTMC modcls has already been discussed in
that example.

Example 5.12
Instead of a single machine, we now consider the activities of two identical
machines working on an inexhaustible source of raw workpieces. We
assume that the setup times, processing times, failure rates, and repair
rates for the two machines are the same. To capture the interactions in
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101

Figure 5.6 Reachability graph with initial marking (200)

this system, we can use the same ETPN models (Figure 5.4) with two
changes: (i) The initial marking is changed to state (200), meaning that
both machines are being sct up for their next operations. (ii) The firing
rates arc marking dependent, and are given for cach M € R [M,] by

F(M,ty)=sM(p)
(M, t2) = pM (p2)
F(M,t3) = [ M (p2)
F(M,ty) =rM (p3)

In the case of t4, we have assumed that two separate facilities are available
to repair both the machines concurrently, if both are in failed condition.

There are six markings in the reachability set now. The transition rate
diagram of the equivalent CTMC is shown in Figure 5.6.
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PROBLEMS

Investigate the complications that will arise in the analysis of SPNs in the
following cases: .
(a) Firing times are non-cxponential, and

(b) deterministic and exponential firing times coexist.

In discrete time stochastic Petri nets proposed by Molloy [1985], cach tran-
sition has a firing time that is a gecometric random variable. Outline a proof
for showing the equivalence between discrete time SPNs and discrete time
Markov chains.

Investigate whether or not the class of all ETPNs is the same as the class of
continuous time Markov chains.

Consider a manufacturing system comprising three failure-prone machines and
exactly two repair facilities, cach of which can attend to one failed machine
at a time. Assuming the rest of the details as in Example 5.8, complete
the definition of an ETPN for this system. Obtain the reachability graph of
the ETPN and the transition probabilities. Also compute the transition rate
matrix of the equivalent Markov chain.

(Dining Philosophers’ Problem). Figure 5.P.2 shows an ETPN model for
the classical dining philosophers’ problem with three philosophers and three
forks. Taking the philosophers as assembly stations and the forks as assem-

Figure 5.P.2
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bling robots, the above problem represents a familiar situation in automated
manufacturing. Obtain the reachability graph, transition probabilities, and the
infinitesimal generator of the equivalent CTMC,

6. Writc a computer program that

(a) generates the reachability graph of a bounded ETPN, and
(b) computes the transition rate matrix of the underlying Markov chain.

5.3 GENERALIZED STOCHASTIC PETRI NETS

Generalized stochastic Petri nets (GSPNs), proposed by Ajmone Marsan,
Balbo, and Conte [1984], constitute the most extensively used class
of SPNs. GSPNs are obtained by allowing transitions to belong to
two different classes: immediate transitions and exponential transitions.
Immediate transitions fire in zero time once they are enabled. Exponential
transitions have the same significance as in ETPNs. The basic motivation
for proposing GSPNs was to avoid having to associate a time with each
transition when it is sufficient to associate times only with the activities
that are believed to have the largest impact on system performance. A
typical example is that of a physical system in which the durations of
activities differ by orders of magnitude. In such a case, it is advantageous
to model the short activities only from the logical point of view. A
strong feature of AMSs that supports the above is the orders of magnitude
difference exhibited by the mean times between machine failures, mean
processing times, and material handling times. GSPNs are particularly
useful because the firing rules are so defined as to reduce the number of
states of the associated Markov chain model, thus reducing the solution
complexity. Moreover, the availability of a logical structure that can be
used in conjunction with the timed one allows the construction of compact
performance models of complex systems.

5.3.1 Definition and Firing Rules

In this section we define a GSPN and discuss the transition firing rules to
generate the reachability graph.

Definition: A generalized stochastic Petri net is an eight-tuple
(P,T,IN,OUT,INH, My, F,S) where

L (P,T,IN,OUT,INH,M,) is an inhibitor-marked Petri net,
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2. T is partitioned into two sets: Ty of immediate transitions and T of
exponential transitions,

F: (R[My)X Tg) — R is a firing function that associates to each
t € Tpin each M € R[M,], an exponential random variable with
rate (M 1),

~h + € T; has zero firing time in all reachable markings, and

S is a set, possibly empty, of elements called random switches, which
associate probability distributions to subsets of conflicting immediate
transitions.

In the graphical representation of GSPNs, a horizontal or vertical line
represents an immediate transition and a rectangular bar represents an ex-
ponential transition. Other conventions regarding graphical representation
remain the same.

In a GSPN marking, several transitions may be enabled simultane-
ously. Let M, be a reachable marking and let T; be the set of enabled
transitions in M;. If T; comprises only exponential transitions, then tran-
sition t; € T; fires with probability

F (M;, 1‘,]‘)

Z F (A/[iv t/c,)

t€l:
The above situation is identical to the one in any ETPN. If T; comprises
exactly one immediate transition ¢}, then ¢, is the one that fires. If 7; com-
prises two or more immediate transitions, then a probability mass function
is specified on the set of enabled immediate transitions by an element of 5.
The firing transition is selected according to this probability distribution.
In this case, the set of all enabled immediate transitions, together with
the associated probability distribution (switching distribution), is called a
random swirch. The set S is a collection of all random switches of the
GSPN model. The probabilities in a switching distribution may be either
independent of the current marking, in which case we have a static ran-
dom switch, or dependent on the current marking, in which case we have
a dynamic random switch.

GSPN markings in which only exponential transitions are enabled
are designated as rangible markings while the rest of the markings are
called vanishing markings. Tangible markings represent states in which
the system stays for nonzero time whereas vanishing markings are those
in which logical changes occur in negligible time.
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Figure 5.7 GSPN model of a central server FMS

Example 5.13

Consider the closed central server model of a simple FMS that comprises an
AGV and two machines My and M; (Example 3.25, Figure 3.13). Figure
5.7 depicts a GSPN model of this system assuming that there are two
fixtures in the system and that in the initial state, AGV is idle, M is
processing one of the parts, and M, is processing the other part. Table

e




Table 5.4 Description of the GSPN model of Figure 5.7

PETRI NET MODELS
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~N AN N B W

P2

: Queue of parts waiting for the AGV

500
Places
1
2 : AGV available
3 : AGV transporting a part
4
5 : Queue of parts waiting for M
6 : Queuc of parts waiting for Mj
7 : M; available
8 : M; available
9 : M processing a part
10 : M, processing a part

Immediate Transitions

. AGYV starts transporting a part

: Finished part gets unloaded from the system
: Part joins the queuc for M:

: Part joins the queue for M;

: M, starts processing a part

. M5 starts processing a part

; Random Switch
(t3,14,15) with associated probabilities (qo, q1,¢2)-

Exponential Transitions

2 : Part transfer by the AGV; firing rate = po
8 : Processing by Mj; firing rate = y;

9 : Processing by Mp; firing rate = po

Initial Marking
i pa:1; pro:l

: A part that has just been transported by the AGV

N

5.4 gives the interpretation of the elements of this GSPN model.

The

GSPN model has 10 places, 6 immediate transitions {{y, 13,14, t5,%6,t7}, 3
exponential transitions {#,, lg, to} with firing rates o, ji1, pt2, respectively,
and no inhibitor arcs. The initial marking is M, = (0100000011), which
we shall denote as p,pgpio specifying only those places having a token.

There is exactly one random switch (static, in this case) comprising the
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MIS

Figure 5.8 Embedded Markov chain for the GSPN model of Figure 5.7

transitions i3, t4, and 5 with corresponding probabilities qg, q;, and ¢,.

In the initial marking papgpig, the exponential transitions tg and ¢4 are
cnabled and hence this is a tangible marking. Here tg fires with probability
ﬁ‘—; and tg fires with probability Zﬁﬁ When t5 fires, the new marking
is p1paprp10, which is a vanishing marking, as an immediate transition t,
is.enabled in it. Note that ¢y is also enabled here. Only ¢, fires since ¢4 is
exponential, resulting in the marking p;p7pio, which is a tangible marking.
Now {; and (g are enabled and they can fire with probabilities IL—UL;E’—;; and
;ij:—my respectively. If ¢, fires, the new marking is pop4p7p1o, @ vanishing
marking enabling 3,14, and {5. At this stage, the random switch can be
invoked to choose the next transition to fire. The evolution of the marking
process proceeds as described above and one can construct the reachability
graph of the GSPN model in this way. Figure 5.8 shows the reachability

raph, with the associated probabilities for transition firings,  Vanishin
grag p
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Table 5.5 Interpretation of the tangible markings in Figure 5.8

My : papgpiro: Machines M; and M, busy; AGV idle

M : psprpio: AGV and M, busy; M; idle

1W3 > p3pspog. AGYV and M1 busy; M2 idle

My : pipsprps: AGV busy and the other part waiting for the AGV
Ms : papeprpro: Ma busy and the other part waiting for M,

Me : papspsps: Mi busy and the other part waiting for M,

markings are shown as single ovals and tangible markings as double ovals.
There are 6 tangible markings {M;, ..., My} and 11 vanishing markings
{Mz,...,M7}. The interpretation of the tangible markings is given in
Table 5.5. Note that these are identical to the six states given in Example
3.25.

In Figure 5.8, it is also to be noted that in vanishing markings
such as M;, and M),, two immediate transitions have been simultane-
ously fired. For example, consider My, = P1p2pap7ps. In this marking,
ty,t3,t4, and {5 are the enabled transitions. Among 13,14, and t5, only
one can fire, as determined by the random switch. Transition ty 1S concur-
rent with each of 3,4, and t5 and its firing does not in any way affect
the latter transitions. Thus we fire the transitions {t,t3} with probability
qo, transitions {t,,t,4} with probability ¢,, and the transitions {t1,15} with
probability ¢,. Concurrent firing of immediate transitions as detailed above
is not always possible and must be decided with care.

9

5.3.2 Analysis of GSPNs

~ The marking process of a GSPN (P, T, IN,OUT,INH, My, F,S) can
be shown to be a semi-Markov process with a discrete state space, given
by the reachability set R [Mj]). The embedded Markov chain (EMC) of
this marking process comprises tangible markings as well as vanishing
markings. The transition probability matrix (TPM) of this EMC can be ;
computed using the firing rates and the random switches.

Example 5.14

The reachability graph in Figure 5.8 is essentially the state transition dia-
gram of the EMC of the marking process of the GSPN model being dis-
cussed. The transition probabilities for each marking can be computed by
examining the set of transitions enabled in the marking. For example, in




Chap. 5 Seet. 5.3 GENERALIZED STOCHASTIC PETRI NETS
5.8 ’

503

marking M, exponential transitions tg and ¢4 are enabled and the proba-
bility of transiting from M, to M-is ;;L‘;L;; and the probability of transiting

from M, to Mg is I:—-‘_i@— In marking My, only one transition tg is en-
1 2

abled and therefore the transition probability from My, to M;is 1. Ag

\GV another example, in marking M,, three (conflicting) immediate transitions
f3,14, and f5 are enabled and by invoking the random switch, the corre.-
sponding transition probabilities are fixed as qq, ¢, and g, respectively. Ir
will be instructive to compute and verify all other transition probabilities.

ble o‘{als. The marking process of a GSPN leaves each vanishing marking as

mf'“kmf%s soon as it enters the marking, because an immediate transition fires. Thus

- given mn | sojourn time in each vanishing marking is zero, and consequently from the

' Example ! performance evaluation point of view, it suffices to study the evolution of

; tangible markings alone. In order to remove vanishing markings from the
markings f EMC, a reduced embedded Markov chain (REMC) is defined, including
simultanc- only tangible markings and the transition probabilities in the REMC are

- marking, deduced from those in EMC as follows:

d 15, only Let the tangible markings be M\, My, ..., M, and the vanishing mark-

is concur- ings be My, My, ..., M,,,, where s is the number of tangible markings

vay affect and v is the number of vanishing markings in the reachability set. The
robability TPM of the EMC can be partitioned as

1, 15} with

iled above TT TV }

Vvr Vvv

where T'T gives the one-step transition probabilities from tangible mark-

ings to tangible markings, TV gives the one-step transition probabilities

7 S) can from tangible markings to vanishing markings, and so on. If A4 is the
’ TPM of the REMC, then it can be shown that

ce, given

EMC) of 0 L

vanishing | - A=TT+) TV+VVievT )

C can be k=0
where + and * above denote matrix addition and matrix multiplication,
respectively. A computationally efficient method for obtaining 4 has been
outlined by Ajmone Marsan, Balbo, and Conte [1984].

sition dia-

being dis- Example 5.15

mputed by For the GSPN model of Figure 5.7, the REMC is shown in Figure 5.9.

xample, in The transition probability matrix of the REMC can be computed using
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M

Figure 5.9 Reduced embedded Markov
chain for the GSPN model of Figure 5.7

(2). The individual transition probabilities are labeled on the directed arcs
connecting the tangible markings.

In order to ensure the existence of a unique steady-state probability
distribution for the marking process of GSPNs, the following simplifying
assumptions are made:

1. The GSPN is bounded. That is, the reachability set is finite.

2. Firing rates do not depend on time parameters. This ensures that the
equivalent Markov chain is homogeneous.

3. The GSPN model is proper and deadlock-free. That is, the initial
marking is reachable with a nonzero probability from any marking in
the reachability set and also there is no “absorbing” marking.

Most of the GSPN models discussed in this book satisfy the above
conditions. However, in Section 5.5 we discuss GSPN models having
deadlocks. The above assumptions make the marking process of a GSPN,
a finite state space, homogeneous, irreducible, and positive recurrent
Markov process. The steady-state probability distribution can therefore
be computed as follows:
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LetY = (y1,92,..., ys) be a vector of real numbers. Then the solution
of the following equations

YA=Y

Qo Hy S

Hy+1y and Z‘y,' =1 (3)
i=1

D gives the stationary probabilities of the REMC. y; gives the relative

number of visits to M; by the marking process. To obtain the steady-
state probabilities of the marking process, we then use the expression

Yy >
T = ] re= 1,20

D > yjmy

J=i

S 4)

where 7; is the steady-state probability of marking M; in the marking
process (proportion of time the marking process spends in M;) and m; is
the mean sojourn time of the marking M;. It has been shown in Section

5.2 that
ected arcs
1 )
my =
LY F(Mi )
teT;
robability
nplifying where T; is the set of enabled transitions in M.
Example 5.16 -
hat th It is easy to verify that the GSPN model of Figure 5.7 satisfics assumptions
S that the 1,2, and 3 above. Hence, unique steady-state probabilities exist. The mean
. sojourn times are given, using (5), by
he initial
arking in 1 1 1
| My = My = ) My =
. H1 T+ jho Ho + o Ho + ph
1 1
my = —; mys = —; mg = —
e above HETA 5T, T
Is having
a GSPN, We can now get the steady-state probabilities by first solving for y1, y,, ..., ys
recurrent using (3) and then substituting in (4). These probabilities are next used in
therefore computing various performance measures. It may be noted that the steady-

state probability of each vanishing marking is identically equal to zero.
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5.3.3 Computation of Performance Measures

Let (P, T,IN,OUT,INH My, F,S) be a GSPN with the set of reachable
tangible markings given by {My, M, .y My}, with steady-state probabil-
iies (7, 7y, ..., m,). Certain generic mean performance measures can be

defined as shown below. The discussion holds for an ETPN model also
and in general for any SPN model.

1. Probability that a particular condition C' holds:

PROB(C)= ",
JES, (6)
where Sy = {j € {1,2,....s) : C is satisfied in marking A/}

2. Probability that a place p; has exactly  tokens (k=10,1,2,..):

PROB (p;, k) = Z 5 ')

JES,

where 5y = {j € {1,2,...,s} : M, (p;) = k)
3. Expected number of tokens in a place p;:

.
ET (pi) = kPROB (p;, k) (8)

k=1

where K is the maximum number of tokens p; May contain in any
reachable marking.

4. Throughput rate of an exponential transition t; e

TR (t]') = Z WiF(]V[i,f]‘) qi5 (9)
165,

where S3 = {1 € {1,2, ..., s} i t; is enabled in M), and ¢i; is com-
puted as follows. ¢,; = 1 if t; is not in conflict with any of the enabled
transitions in M;. Otherwise, qi; 1s the probability that t, fires among
the conflicting enabled transitions in Af;.

3. Throughput rate of immediate transitions:
The throughput rates of immediate transitions can be computed from

those of the exponential transitions and the structure of the GSPN
model. This will be illustrated in Example 5.17.
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6. Mean waiting time in a place p;:

eachable This can be computed by invoking Little’s result as
probabil- ET (pi '
. ; pi) ET (pi)
WAIT (p;) = . = 1
il als L VI T R VR VIO
t,eIT(p:) t,€0T(p:)

Recall in the above that I7(p;) is the set of input transitions of p;
and OT (p;), the set of output transitions of p;.

6
" ©) Fxample 5.17
g j} We illustrate the computation of some typical performance measures for
; the GSPN model of Figure 5.7.
- ) 1. Probability that AGV queue is empty
(7) = PROB (p1,0) = 7 + 7o + 73 + 75 + 76
2. Mean length of AGV queue = PROB (p;,1) = 74
3. Mean number of customers in the AGV queue and the AGV (or the
AGYV subsystem) = (73 + 73) + 2714
4. Utilization of AGV = PROB (p3,1) = PROB (p2,0) = 7y + 73 + 74
(8) 5. Throughput rates of exponential transitions
r[,ll)(l‘z) = 7I'2}1,0 + 7I'3/l,0 + 7I'4}1,0 s (7'('2 + T3 + 7I'4)/L0
i an TR(ts) = mipy + mapy + Tepy = (73 + 73 + 76) py
n y TR(ts) = (m1 + 72 + 75) 2
6. The throughput rates of the immediate transitions can be computed as:
TR(ty)=TR(ly); TR(13) =q TR(t2)
9 TR(ty)=q TR(t2); TR(ts)=qa TR(ty)
TR(tg) =TR(ts); TR(t7) =TR(lg)
is com-
e enabled 7. Mean waiting time in AGV queue:
es among ET (0
WAIT (py) = ET(p)
TR(t3)+ TR(ts) + TR(ty)
uted from
he GSPN 8. Production rate of parts is given by T R (t3), the throughput rate of ¢s.

9. Mean MLT is given by 77{-2(737 since the population of the network is 2.
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5.3.4 Representational Power of GSPN Models

In this section we show the flexibility and power of GSPN models by
presenting three examples. The models presented show how priorities,
dynamic routing schemes, and changes in the architecture of the physical
system can be captured by GSPNs. The discussion is again centered on
the central server FMS with one AGV and two machines.

Example 5.18

In the FMS being discussed, let us make the following change in decision
rules: If My and M; are both available, the waiting part is assigned to M,
(probably because M, is faster). If M; alone is available or M, alone is
available, the part is assigned to the available machine. Finally, if both
M; and M; are currently busy, the part is assigned to one of the queues
probabilistically, as in the previous case. The existence of priorities and
conditional decisions make the CQN model non-product form and it may
be required to use approximate techniques to find the solution. GSPNs can,
however, be used to model the new decision rule exactly. Figure 5.10 shows
the new GSPN model. Note that this model has two additional places py;
and p;, and five additional transitions ¢y, ..., t;4, compared to the original
model (Figure 5.7). The interpretation of these is included in Table 5.6.
The transition t5 of the previous model, however, is missing in the new
model in order to facilitate the modeling of the new decision rules. The
priorities manifest in these decision rules are caplured by the three inhibitor
arcs from p;7 to t)y, pg 10 {1y, and ps to #10. For example, ty, fires only
if the wailing part finds a token in p; (that is, M; is available) and there
is no token in pg (that is, M, is not available). Funther, the lone random
switch in the previous model is now replaced by two random switches in
the new model, since the probabilistic routing to M; or M, arises only
in the cvent that both the machines arc busy. Table 5.6 also shows the
probability assignments to these random switches.

Figure 5.11 shows the reachability graph of the new GSPN model with
the same initial marking M; = (0100000011) as before. [t is interesting to
note that the number of tangible markings is now 4 (compared to 6 in the
previous model) and the number of vanishing markings is 9 (compared to 11
previously). The reduction in the number of markings is obviously due to
the new decision rules. The analysis of this GSPN model and performance
evaluation can be carried out in the same way as detailed before. It would
be instructive to compute the TPM of the EMC, the TPM of the REMC, the
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Figure 5.10 A GSPN that models priorities
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Table 5.6 Legend for Figure 5.10

Places
11 : A part that will be scheduled onto M; or M,
12 : A part that finds both the machines M; and M3 busy

Transitions
10 : M; available while M is busy
11 : M; and M, both busy
12 : M, available
13 : A part is assigned to the M; queue
14 : A part is assigned to the M, queue.

Inhibitor Arcs
pr to t1y; ps 10 i15 ps t0tyg

Random Switches

[ta: qo; ta: 1-qo)
T

iz : ¢; tia: 1—4q] where g = ———
71+ q2

and go + 1 + ¢2 = 1

steady-state probabilities, and different performance measures to compare
the performance of the two systems discussed so far.

Example 5.19

Here we modify further the decision rule of Example 5.18. If a part finds
both machines busy, it will be assigned to the queue that has fewer waiting
parts. Further, if the two queues comprise the same number of waiting parts,
the routing will be based on the probabilities ¢, and ¢,. The above decision
rule can be captured by the GSPN model of Figure 5.10, by making the
random switch [¢y3,1,4] dynamic. Consider the following definitions for
the switching probabilities:

Prob (t13) =0 if M (])5) > M (])6)

-4 if M(ps)= M (ps)

QA+ q2
if M (ps)< M (ps)
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Figure 5.11 Embedded Markov chain of the modified GSPN model

Prob(tyy) =0 if M (ps) > M (ps)
q2 .
= if M (pg) =M
g1+ 2 (s) (ps)
=1 if M (ps) < M (ps)

In the above definitions, M is the current marking of the GSPN. The
probabilities are now being assigned to ty3 and {4 in accordance with
the latest decision rule. The above example shows the use and power of
dynamic random switches as a modeling paradigm in GSPNs.

Example 5.20

Let us say the number of fixtures in the system is incrcased o seven.
With respect o the GSPN models of Figures 5.7 and 5.10, consider the
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‘ following initial marking:
pr:2; paily psily peily peily procl

The above refers to the situation where the AGV, My, and M, are all busy;

two parts are waiting in the AGV queue, and one part cach is waiting in the i
M; and M, quecues. This is one manifestation of the FMS system with seven
fixtures. Because of the irreducibility of the underlying Markov chain, there
are several other initial markings that can represent the given System.

In addition, let us say we have two identical M; machines and two
identical M, machines instead of one of each type in the previous case. ’
Then the initial marking

pr:l; pacly psily pei2y pro2

will yield the desired GSPN model. Of course, here again there are several
other initial markings that can generate the same reachability graph, because
of the reversibility of this GSPN model. There is another important change
that needs to be done in this case, namely in the firing rates of tg and tg.
To account for the simultaneous activity of the two machines of each type,
we define the following dynamic (or marking-dependent) firing rates:

ts: M(po)pur and to: M (pro) 2

Note that the changes effected as shown in this example significantly vary
the reachability set, EMC, REMC, and the stcady-state probabilities, but
the new values can be computed in an automated way.

i PROBLEMS

‘ ;: 1. Figure 5.P.3 shows a part of a GSPN model comprising immediate transitions
el t1,12,13. Can ti,t; be fired simultancously? Obtain sufficient conditions
under which two or more immediate transitions can be concurrently fired in
a GSPN.
J 2. Show that the steady-state probability distribution of the tangible markings
N | of the GSPN is the same as that of a CTMC embedded within the marking
. process. From the EMC and the REMC, how can one obtain the transition '
rate matrix of the CTMC? 1

3. Derive the expression

| A=TT+ S TV+VVEeVT
1‘; i' k=0




