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Abstract. In this paper we describe a cooperative localization algorithm based
on a modification of the Monte Carlo Localization algorithm where, when a robot
detects it is lost, particles are spread not uniformly in the state space, but rather
according to the information on the location of an object whose distance and bear-
ing is measured by the lost robot. The object location is provided by other robots
of the same team using explicit (wireless) communication. Results of application
of the method to a team of real robots are presented.

1 Introduction and Related Work

Self-localization is one of the most relevant topics of current research in Robotics.
Estimation-theoretic approaches to self-localization, as well as to self-localization and
mapping (SLAM) have produced significant results in recent years, mainly for single
robots, providing effective practical results for different applications. One of the re-
search frontiers in this topic concerns now cooperative localization (and possibly map-
ping) using a team of multiple robots.

One of the earlier works on cooperative localization [Sanderson, 1996] addresses
cooperative localization within a Kalman filter framework, where the relative positions
of the robots are the observations of the filtering part of the algorithm, and the state
includes the positions of all the robots. Fox et al introduced an extended version of the
general Markov Localization algorithm [Fox et al., 2000], where two robots use mea-
surements of their relative distance and bearing to insert an extra step in the belief
update algorithm based on the Bayes filter. They used the Monte Carlo Localization
(MCL) sampled version of Markov Localization algorithm to influence the weights of
the particles of the observed robot from the particles sampling the inter-robot distance
and bearing measurement model of the observing robot. Other authors address multi-
robot localization using similar approaches, so as to provide relative localization of the
team members in one of the team robots local frame from inter-robot distance measure-
ment [Roumeliotis and Bekey, 2002, Zhou and Roumeliotis, 2008]. All these works do
not use environment information commonly observed by the team robots to improve
their localization.

Other works attempt to take advantage of environment features and landmarks to
help a multirobot team to improve the pose estimates of its own team members, while
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simultaneously mapping the landmark locations. Fenwick et al [Fenwick et al., 2002]
focus on convergence properties and performance gain resulting from the collaboration
of the team members on concurrent localization and mapping operations. Jennings et
al [Jennings et al., 1999] describe a stereo-vision-based method that uses landmarks
whose location is determined by one of the robots to help the other robot determining
its location. The first approach addresses a general model that does not take advantage
of particular features of the estimation-theoretic methods used (e.g., particle filters) to
improve the robustness and to speed up cooperative localization, while the second is
focused on a particular application.

In this paper, we introduce a modification of MCL that changes the particle spreading
step (used when a robot detects it is lost), using information provided by other robot(s)
of the team on the location of an object commonly observed by the lost robot. This
modification speeds up the recovery of the lost robot and is robust to perceptual aliases,
namely when environments have symmetries, due to the extra information provided by
the teammates. The introduced method enables cooperative localization in a multirobot
team, using visually shared objects, taking advantage of the specific features of particle
filter algorithms. Each robot is assumed to run MCL for its self-localization, and to able
to detect when the uncertainty about its localization drops below some threshold. An
observation model that enables determining the level of confidence on the ball posi-
tion estimate is also assumed to be available at each robot of the team. Though these
assumptions are, to some extent, stronger than those assumed by cooperative simultane-
ous localization and mapping methods, they allow global robot and object localization.
Though other authors have explored the use of observations to initialize and/or reset par-
ticle filters adequately [Lenser and Veloso, 2000, Thrun et al., 2001], the use of shared
observations of common objects to cooperatively improve multirobot MCL is novel, to
the best of our knowledge.

The paper is organized as follows: in Section 2, we describe our cooperative local-
ization method. Results of experiments with real soccer robots in the RoboCup Middle-
Size League (MSL), that use the ball as the visually shared object, are presented in
Section 3. Conclusions and prospects for future work are discussed in Section 4.

2 Cooperative Localization Using a Visually Shared Object

Let us consider a team of N robots, r1, . . . , rn. Robot ri has pose (position + orienta-
tion) coordinates lri = (xri , yri , θri) in a global world frame, and estimates them using
a MCL algorithm.

Each robot can determine the position of an object o in its local frame, therefore
being able to determine its distance and bearing to that object as well. Robots can also
determine if they are lost or kidnapped, i.e., if their confidence in the pose estimate
drops below some threshold. If a robot is not lost, it can also determine the object
position in the global world frame using the transformation between its local frame and
the global world frame that results from the knowledge of its pose. The estimate of the
object position in any frame is determined based on a probabilistic measurement model
that includes the uncertainty about the actual object position. When the global world
frame is used, additional uncertainty is caused by the uncertain pose of the observing
robot.
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The position of the object as determined by robot ri in the global world frame is
denoted by pi

o = (xi
o, y

i
o), while the distance and bearing of the object with respect to

the robot, as measured by the robot, are given by di
o and ψi

o, respectively.

2.1 Overall Description

The original MCL algorithm used by each of the team robots to estimate its pose is as
follows:

Algorithm MCL(L(t − 1), u(t), z(t), map)
static wslow, wfast

L̄(t) = L(t) = ∅
wavg = 0
for m = 1 to M do

l[m](t) = sample motion model(u(t), l[m](t − 1))
w[m](t) = measurement model(z(t), l[m](t), map)
L̄(t) = L̄(t) + 〈l[m](t), w[m](t)〉
wavg = wavg + 1

M w(t)[m]

endfor
wslow = wslow + αslow(wavg − wslow)
wfast = wfast + αfast(wavg − wfast)
for m = 1 to M do

with probability max{0.0, 1 − wfast/wslow} do
add random pose to L(t)

else
draw i ∈ {1, ...., M} with probability ∝ w[i](t)
add l[i](t) to L(t)

endwith
endfor
return L(t)

where L̄(t) is a set of Mparticles and their weights at step t of the iteration process,
〈l[m](t), w[m](t)〉, m = 1, . . . , M , L(t) is a set of M unweighted particles l[m](t), m =
1, . . . , M , u(t) are odometry readings at time t, z(t) are robot observations at time t,
concerning its self-localization, map is a map of the robot world (e.g., a set of landmarks
or other), and wfast, wslow are auxiliary particle weight averages, with 0 ! αslow '
αfast, such that wslow provides long-term averages and wfast provides short-term aver-
ages. The algorithm uses a sample motion model and a measurement model to update,
at each step, the robot pose, from the odometry u(t) and measurements z(t) informa-
tion. It keeps adding random particles to those obtained in the re-sampling step (where
the probability of cloning an existing particle is proportional to its weight), in a num-
ber which increases with the deviation of the wfast average from the long-term wshort

average. In the limit case, when all particle weights tend to zero in the short-term, all
particles are reset according to an uniform distribution.
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When cooperative localization in a multirobot team, using visually shared objects, is
intended, MCL running in a given robot ri must be modified so as to use information
from other robot(s) in the team, when wfast/wslow drops below a given confidence
threshold Cthreshold, meaning that ri is lost or was kidnapped. That information comes
in the form of the object position determined by the other robot(s). Assuming ri (the
lost/kidnapped robot) can observe the same object, the re-sampling is then based on a
spatial probability distribution which depends on the distance and bearing of the lost
robot to the object and on the uncertainty associated to the object position measurement
provided by the other robot(s). This way, while a uniform distribution is still used to
keep a certain level of exploration of the pose space to make the algorithm robust to
measurement and motion errors, if those errors influence becomes too high, the particles
are completely reset according to the cooperative information from teammates about a
visually shared object.

The new MCL algorithm used by robot ri from the team to estimate its pose be-
comes (the subindex ri is used for local estimates, odometry readings, observations and
particle weights):

Algorithm Cooperative Shared Object MCL(Lri (t − 1), uri(t), zri(t), map)
static wslow, wfast

L̄ri(t) = Lri(t) = ∅
wavg = 0
for m = 1 to M do

l[m]
ri (t) = sample motion model(uri(t), l

[m]
ri (t − 1))

w[m]
ri (t) = measurement model(zri(t), l

[m]
ri (t), map)

L̄ri(t) = L̄ri(t) + 〈l[m]
ri (t), w[m]

ri (t)〉
wavg = wavg + 1

M w[m]
ri (t)

endfor
wslow = wslow + αslow(wavg − wslow)
wfast = wfast + αfast(wavg − wfast)
if wfast/wslow < Cthreshold and info about object position in global world frame
available from teammate(s) rj (= ri and object visible to ri then

draw Lri(t) according to object pose spatial probability distribution determined
from ri and rj information
else

for m = 1 to M do
with probability max{0.0, 1− wfast/wslow} do

add random pose to Lri(t)
else

draw k ∈ {1, ...., M} with probability ∝ w[k]
ri (t)

add l[k]ri (t) to Lri(t)
endwith

endfor
endif
return Lri(t)
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Spatial Probability Density

Fig. 1. Typical spatial probability density function from which particles are drawn, after a decision
to reset MCL

In the new algorithm one needs to further detail how to handle the following issues:

1. info about object position in global world frame available from teammate(s) rj (=
ri;

2. draw Lri(t) according to object pose spatial probability distribution determined
from ri and rj information.

Item 1. concerns pj
o, i.e., the object position in the global world frame, as determined

by rj (in general, rj may be any robot but ri, or several such robots, in which case the
object position results from the fusion of their information). Furthermore, we assume
that, associated with pj

o, rj provides a confidence measure regarding that information.
That confidence measure depends on rj ’s

– object observation model;
– self-localization estimate uncertainty.

Assuming a bivariate Gaussian object observation model for rj centered on pj
o and with

a covariance matrix Σj
o(dj

o, ψ
j
o) dependent on the distance and bearing to the object, this

item contributes to the confidence measure with |Σj
o(dj

o, ψ
j
o)|−1.

The self-localization estimate confidence factor is not so simple, since one must
determine it from the particle filter set. One good approach to this is to consider the
number of effective particles n

rj

eff = 1∑M
m=1(w

[m]
rj )2

[Thrun et al., 2005].

Considering both factors, the measure of confidence of rj on its own estimate of
object o position npj

o
is given by

CFpj
o

= η|Σj
o(d

j
o, ψ

j
o)|−1n

rj

eff

where η is a normalization factor.
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Fig. 2. Computing the orientation of a particle representing a robot pose hypothesis. On the left,
bearing of the object with respect to the robot. On the right: relevant angles for the computation
of the robot orientation hypothesis for each particle.

Regarding item 2., and assuming that the object is visible to the lost robot ri, this
robot determines the distance and bearing of the object in its local frame, (di

o, ψ
i
o). The

distance di
o is used to parametrize the spatial probability density function (pdf) from

which particles representing the robot position in polar coordinates are drawn, after a
decision to reset MCL. This bivariate (using polar coordinates d and ψ centered in the
object) pdf is:

– Gaussian in the d variable, with mean value di
o and variance inversely proportional

to the confidence factor CFpj
o
;

– uniform in the ψ variable, in the interval [0, 2π[ rad.

An example of this pdf is shown in Figure 1.
One can trivially map the polar coordinates onto Cartesian coordinates, thus obtain-

ing the xri , yri position components of the pose lri for robot ri.
The orientation component θri of lri is computed from the bearing angle ψi

o of the
object, i.e., the angle between ri longitudinal axis (the one pointing towards its ”front”)
and the line connecting its center with the object center (see Figure 2 - left), and the
actual angle ψ of this line with respect to the x-axis of a frame centered on the object,
i.e., the particle angle in polar coordinates centered on the object (see Figure 2 - right).
We add some random noise θrand with a zero mean Gaussian pdf representing the
bearing measurement error model. Hence, from Figure 2:

θri = ψ + π − ψi
o + θrand.

In summary, the Cooperative Shared Object MCL algorithm modifies the plain MCL
algorithm, replacing the ”standard” particle reset, using a spatially uniform pdf, by a
particle reset based on the information about the position, in the global world frame
(determined by one or more teammates), and the distance and bearing, in the local
frame of the lost/kidnapped robot, of an object visible to all the intervening robots. Ad-
ditional input parameters of this algorithm are (assuming ri as the lost/kidnapped robot
and rj as any of the robots providing information to improve its localization):
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– Cthreshold to determine if the robot is lost or was kidnapped;
– determinant of the object measurement model covariance matrix |Σj

o(dj
o, ψ

j
o)|−1

— sent by rj to ri when ri detects it is lost and requests support from teammates;
– the number of effective particles in n

rj

eff MCL algorithm — sent by rj to ri when
ri detects it is lost and requests support from teammates;

– distance and bearing of the object in ri local frame, (di
o, ψ

i
o) — measured by ri

when it is lost and receives the above information from teammate(s);
– variance of the zero mean Gaussian pdf representing the bearing measurement error

model at ri (see previous item).

The first two items can be combined first in rj , that sends to ri its confidence factor
CFpj

o
on the object position in the global world frame.

The regular procedure for each of the team robots is to run Cooperative Shared -
Object MCL. When wfast/wslow < Cthreshold at ri, this robot requests help to team-
mates. One or more teammates rj send the object position in global world coordinates
and the associated confidence factor. Then, ri particles are spread uniformly over a
circle centered on the object, with nominal radius equal to the distance to the object
measured by ri, added to a Gaussian uncertainty around this value, with variance pro-
portional to rj confidence factor. The orientation component of the pose results from
the bearing ψi

o of the object measured by ri in its local frame, including an uncertainty
proportional to the variance of the Gaussian representing this measurement model.

A couple of practical issues to be considered are:
– after a robot detects it is lost and spreads its particles over a circle centered with the

visually shared object, it should run the regular MCL algorithm in the next steps (a
number dependent on the application), so that it does not keep resetting its particles
over a circle around the object, while its pose estimate has no converged to the
actual value;

– the decision on which teammates can contribute with useful information may be
taken by considering their own confidence factor and only using the information
provided by robots with CFpj

o
above some given threshold. In general, all team-

mates can contribute, but in some cases their information may be highly uncertain.

2.2 Particle Spreading Validation

There is a specific situation where the proposed algorithm requires some improvement,
e.g., when a robot is kidnapped to a pose where it observes the object at approximately
the same distance of where the robot was before. In this case, when the robot detects it
is lost by checking its wfast/wslow value, it will still spread new particles over a circle
centered with the object, including a region around where the robot wrongly estimates
its pose. To prevent such situations, the algorithm must include a restriction that requires
all the re-spread particles to be out of a region (e.g., a circle) that includes the majority
of the particles at the MCL step when the robot detected it was lost. Nonetheless, it is
important to note that particles may be correct in the old pose, if they just have similar
positions but fairly different orientations. Because of this, the algorithm must also check
if the orientation hypothesis associated to each particle is within a small range of values
around the orientation at kidnapping detection time. If they are not, the restriction above
does not apply.
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Fig. 3. Cooperative robot localization in RoboCup Soccer MSL: (a) The white robot determines
the ball position in its local frame but its estimated pose (based on field line detection - lines ob-
served by robot are dashed and do not coincide at all with the actual solid field lines) is incorrect,
because the robot was kidnapped. (b) Teammates (green robots) communicate the ball position in
the global world frame, as well as the corresponding confidence factor. (c) Lost robot measures
its distance and bearing to the ball and re-spreads the particles according to this and to the ball
position team estimate. (d) The previously lost robot regains its correct pose.

3 Results of Implementation in Real Soccer Robots

We have applied the Cooperative Shared Object MCL algorithm to real robots in
RoboCup Soccer Middle-Size League (MSL), in which the robots use the ball to regain
their pose when they are kidnapped and detect to be lost on the field. Figure 3 provides
an example that illustrates the algorithm application in this scenario.

3.1 Experimental Setup 1

In this setup tests were made by kidnapping a robot to nine different positions, in one
quarter of the whole soccer field, as depicted in Figure 4. The other field regions would
not provide extra information, due to the soccer field symmetry. One teammate stopped
in a random position always sees the ball and informs the kidnapped robot of the ball’s
position on the global field frame. Both robots use MCL with 1000 particles, as de-
scribed in a previous paper [Santos and Lima, 2010]. The standard deviation of the
Gaussian used to model the bearing angle measurement error at the kidnapped robot
was adjusted experimentally as π/12 rad.

We kidnapped the robot five times for each of the nine positions. Kidnapping was
carried out by picking up the robot and moving it to another location with MCL on and
after its convergence to a correct estimate. After kidnapping, the increase of uniformly
distributed particles was visible, turning quickly to a re-spread over circle centered with
the ball position, as estimated by the teammate.
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Fig. 4. Layout of experiments. A ) The black numbered spots correspond to the positions to
where one of the team robots was kidnapped. The red circle represents a static robot, always well
localized, and watching the ball (smaller yellow circle). B) The figure in B is an example snapshot
of the global frame interface which plots real robot and ball positions as well as particles used
by MCL in real-time. Here it shows the kidnapped robot spreading particles after getting lost and
using the shared ball.

The algorithm runs on a NEC Versa FS900 laptop with a Centrino 1.6GHz processor
and 512Mb of memory, using images provided by a Marlin AVT F033C firewire cam-
era, and in parallel with the other processes used to make the robot play soccer. The
camera is mounted as part of an omnidirectional dioptric system, using a fish-eye lens
attached to it.

The robots disposed as in position 4 are depicted in Figure 5.

Fig. 5. Real robot example for one of the layout locations: the robot on the left is the robot that
informs about the ball position, while the robot on the right is the kidnapped robot, in location 4
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3.2 Experimental Setup 2

In this setup, the teammate which observes the ball tracks and follows the ball by main-
taining a fixed orientation and distance with respect to ball. We kidnapped the other
robot in the following 4 cases during this setup:

– Case 1: Both observer robot and the ball moving when the ball is in the field of
view (FOV) of both robots. Robot kidnapped twice in this case.

– Case 2: Observer robot stopped and the ball is moving while the ball is in the FOV
of both robots. Robot kidnapped once in this case.

– Case 3: Both observer robot and the ball stopped when the ball is in the FOV of
both robots. Robot kidnapped twice in this case.

– Case 4: Both observer robot and the ball moving when the ball moves away from the
FOV of the kidnapped robot during the time of kidnapping and then later reappears
in its FOV. Robot kidnapped once in this case.

The rest of the details for this setup is similar to experimental setup 1.

3.3 Results and Discussion

Results of experiments in setup 1 are shown in Table 1. In the table, successes corre-
spond to the number of experiments where the robot could regain its correct pose after
kidnapping occurred. Iterations to converge refer to the mean value of iterations re-
quired by the algorithm to converge after a kidnapping, over 5 experiments for a given
kidnapping location. Note that one prediction and one update iteration of MCL take
approximately 0.1s each, therefore the mean value of iterations should be multiplied
by 0.2 s to have an idea of the time taken by the algorithm in each case. Overall, the
algorithm performed quite well in real situations, including cases where we kidnapped
the robot to a position where its distance to the ball remained the same. Some field lo-
cations are clearly more demanding than others (e.g., 5, 6, 7) causing the robot to fail
to regain its posture in one of the tests, possibly due to perceptual aliasing relatively to
other field positions.

In the experimental setup 2 the robot successfully recovers and re-localizes itself
in 5 situations (3 Cases) and fails in 1. The number of iterations performed by the

Table 1. In experimental setup 1 results of kidnapping a robot to 9 different positions on the field
(third column is the average of 5 experiments per location)

Field position Successes Iterations to converge
1 5 14.6
2 5 14.8
3 5 7.2
4 5 19.5
5 4 25.5
6 4 10
7 4 15.3
8 5 21
9 5 16
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Table 2. Results of kidnapping as explained in experimental setup 2

Case Situation Result Iterations to converge
1 1 Success 17

2 Success 26
2 1 Failure 18
3 1 Success 15

2 Success 19
4 1 Success 61

algorithm to converge are presented in Table 2. In case 4 of this setup, the robot per-
forms a very high number of iterations to converge mainly due to the absence of the ball
from kidnapped robot’s FOV for a while before it comes in the FOV of both robots.

In all the sets of experiments, communication delay between the robots was consis-
tently monitored during the run-time of the algorithm. Older data (> 2seconds) was
discarded. A chunk of iterations performed by the robot to converge to the right posture
is attributed to this communication delay.

4 Conclusions and Future Work

In this paper we presented a modified MCL algorithm for cooperative localization of
robots from a team, where an object visually observed by all the team members involved
in the cooperative localization is used. The algorithm takes advantage of the information
on the visually shared object, provided by teammates, to modify the particle reset step
when a robot determines it is lost (e.g., because it was kidnapped). The algorithm was
applied to real robots in RoboCup Soccer MSL with considerable success.

The major issue with our approach is the confusing situation which can arise due to
false positive identification of the shared object. A proper approach to solve it would be
to use a fused information of the shared object, where the fusion algorithm can discard
false positives detected by teammates. Secondly, a fast moving ball creates larger un-
certainty about its position which also affects the robustness of our approach to some
extent.

Future work will include testing the algorithm in more demanding situation, such
as during actual games, with the robots continuously moving. Furthermore, we plan
to improve the algorithm by modifying the original MCL such that a fraction of the
particles is always spread over a circle algorithm, depending on the ratio between the
short-term average and long-term average of their weights, instead of checking when
this ratio drops below a given threshold. Other objects, such as the teammates, can
also be shared to improve cooperative localization, as long as one can determine their
position and track them.
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