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1 Introduction

The Kalman and the Extended Kalman filters are widely-known stochastic
filtering algorithms. They follow a Bayesian approach and model the state
belief as a normal distribution. While the Kalman filter is optimal, it only
applies to linear systems with additive white normal noise. The Extended
Kalman filter applies to non-linear systems, but there are no guarantees of
neither optimality nor convergence.

The purpose of this tutorial document is to provide a simple, yet complete,
derivation of the time-discrete version of these filters. It was strongly inspired
by these sources:

• Sebastian Thrun, Wolfram Burgard, Dieter Fox. Probabilistic Robotics.
MIT Press, 2005.

• Maria Isabel Ribeiro. Kalman and Extended Kalman Filters: Concept,
Derivation and Properties. Instituto de Sistemas e Robótica, Instituto
Superior Técnico, 2004.

The Kalman filter aims at estimating the hidden state of a linear time-variant
system, given its input, and a (possibly) partial and noisy observation of the
state. First, a formal model of such system, for discrete time, is presented in
section 2. Then, the Kalman filter for this system is derived in section 3. This
filter can no longer be applied to nonlinear systems. However, one common
approach is to linearize the system at each time step, and then apply the
Kalman filter to this linearized version. This corresponds to the extended
Kalman filter (EKF), which is derived in section 4.
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2 System model

Consider the following discrete time linear system:

xt = Atxt−1 +Btut + εt

zt = Ctxt + δt
(1)

where xt ∈ Rn is the state vector1, ut ∈ Rm is the control input, and zt ∈ Rk

is the measurement. The sources of uncertainty are the state transition noise
εt ∈ Rn, and the measurement noise δt ∈ Rk. Both of these noise signals
are assumed to be normally distributed with zero mean, εt ∼ N (0, Rt) and
δt ∼ N (0, Qt), and both uncorrelated with the state vector. The initial state
vector is also assumed to be normal:

x0 ∼ N (µ0,Σ0) (2)

Under these circumstances, the state vector is always normal distributed,
meaning that it suffices to compute its mean and covariance matrix to have
a complete description of the state distribution.

3 Kalman filter

The Kalman filter is recursive, meaning that the state distribution of the
state at time t is computed from the one at time t − 1. Consider that we
know the sequences of all measurements and all control inputs up to time t.
The self-evident notation z1:t = [z1, z2, . . . , zt] and u1:t = [u1, u2, . . . , ut] will
be used to denote these sequences. The desired (posterior) state distribution
at time t, called belief, is defined by

bel(xt) = p(xt|z1:t, u1:t) ∼ N (µt,Σt) (3)

where µt and Σt are the parameters of the normal distribution. To compute
this distribution, from the one at time t− 1

bel(xt−1) = p(xt−1|z1:t−1, u1:t−1) ∼ N (µt−1,Σt−1) (4)

the Kalman filter proceeds in two steps: a (1) prediction step, which uses the
control input ut alone to compute an intermediate belief state

bel(xt) = p(xt|z1:t−1, u1:t) ∼ N (µt,Σt) (5)

and a (2) update step which uses the measurement zt alone to improve this
belief into the desired bel(xt). Each one of these steps will be derived below.

1Time dependency on t will be denoted with subscript index t.
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3.1 Prediction step

The goal of this step is to compute bel(xt) from bel(xt−1) and ut. The state
vector is always normal distributed, meaning that it suffices to compute its
mean µt and covariance Σt.

The mean follows directly from the system model (1)

µt = E[xt|z1:t−1, u1:t]

= AtE[xt−1|z1:t−1, u1:t] +Btut + 0

= AtE[xt−1|z1:t−1, u1:t−1]︸ ︷︷ ︸
µt−1

+Btut + 0

= Atµt−1 +Btut

(6)

taking into account that the distribution of xt−1 is independent of the future
control input ut. The same line of reasoning applies to the covariance

Σt = E[(xt − µt)(xt − µt)T |z1:t−1, u1:t] (7)

Expanding one term of the expression inside the expectation operator, us-
ing (1) and (6), we can get

xt − µt = (Atxt−1 +Btut + εt − Atµt−1 −Btut)

= At(xt−1 − µt−1) + εt
(8)

Multiplying this expression by its transpose, we obtain

(xt − µt)(xt − µt)T =At(xt−1 − µt−1)(xt−1 − µt−1)TATt +

At(xt−1 − µt−1)εTt +

εt(xt−1 − µt−1)TATt +

εtε
T
t

(9)

The application of the expectation operator (7) results in

Σt = AtE[(xt−1 − µt−1)(xt−1 − µt−1)T |z1:t−1, u1:t]A
T
t + 0 + 0 +Rt

= AtE[(xt−1 − µt−1)(xt−1 − µt−1)T |z1:t−1, u1:t−1]︸ ︷︷ ︸
Σt−1

ATt +Rt

= AtΣt−1A
T
t +Rt

(10)

noting again that xt−1 is independent of the (future) control input ut.
In summary, the expressions for µt and Σt, which completely describe the

belief bel(xt), are given by

µt = Atµt−1 +Btut

Σt = AtΣt−1A
T
t +Rt

(11)
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3.2 Update step

Having the intermediate belief bel(xt), we want now to update it with the
new measurement zt. To do so we will use the Bayes rule

bel(xt) = p(xt|z1:t, u1:t)

= η p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

= η p(zt|xt)bel(xt)

(12)

using the assumption that the measurement zt is conditionally independent
of past measurements and of control, given the knowledge of the state xt.
The term η is a normalizing constant that does not depent on xt. Given the
measurement equation of (1), and knowing the value of xt, the only source
of randomness is δt. Thus, it is clear that zt is normally distributed, with
mean Ctxt (since δt has zero mean, and xt is fixed) and with covariance

Cov[zt|xt] = E[(zt − Ctxt)(zt − Ctxt)T |xt]
= E[δtδ

T
t |xt] = Qt

(13)

Thus, the distribution of zt given xt can be written

p(zt|xt) = |2πQt|−
1
2 exp

[
−1

2
(zt − Ctxt)T Q−1

t (zt − Ctxt)
]

(14)

Using (12) we can then write

bel(xt) = η p(zt|xt)bel(xt)

= η′ exp

[
−1

2
(zt − Ctxt)T Q−1

t (zt − Ctxt)
]

exp

[
−1

2
(xt − µt)

T Σ
−1

t (xt − µt)
]

= η′ exp

[
−1

2

[
(zt − Ctxt)T Q−1

t (zt − Ctxt) +

+ (xt − µt)
T Σ

−1

t (xt − µt)
]]

(15)

where both η and η′ are normalizing constants. For the following derivations,
we will drop the t indices for the sake of clarity. Inside the exponential there
is a sum of two quadratic forms, which can be manipulated into a single
quadratic form by

(z − Cx)TQ−1(z − Cx) + (x− µ)TΣ
−1

(x− µ) =

= xT (CTQ−1C + Σ
−1

)x− 2xT (CTQ−1z + Σ
−1
µ) + µTΣ

−1
µ+ zTQ−1z

(16)
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If bel(xt) has a normal distribution, its quadratic form inside the exponential
should match the above one. Such quadratic form can be expanded in a way
to match the above one:

(x− µ)TΣ−1(x− µ) = xTΣ−1x− 2xTΣ−1µ+ µTΣ−1µ (17)

noting that all these variables are referred to time t, as we are omitting these
indices. Comparing (16) with (17), we can immediately derive an expression
for the updated covariance

Σ−1 = CTQ−1C + Σ
−1

(18)

Concerning now the updated mean, we can use the crossed multiplication,
along with (18)

CTQ−1z + Σ
−1
µ = Σ−1µ

= CTQ−1Cµ+ Σ
−1
µ

(19)

From reordering the terms it follows that

CTQ−1(z − Cµ) = Σ
−1

(µ− µ)

⇔ CTQ−1(z − Cµ+ Cµ− Cµ) = Σ
−1

(µ− µ)

⇔ CTQ−1(z − Cµ) = (CTQ−1C + Σ
−1︸ ︷︷ ︸

Σ−1

)(µ− µ)

⇔ µ = µ+ ΣCTQ−1(z − Cµ)

(20)

The remaining terms in (16) and (17) shall not raise any concern, since they
do not depend on x, and thus any discrepancy can be factored out of the
exponential, and captured by the normalizing constant η′ in (15).

One important concept in Kalman filtering is the Kalman gain, corre-
sponding to the matrix K = ΣCTQ−1 in (20), multiplying the difference be-
tween the observed measurement and the predicted measurement Cµ. This
gain represents how much the predicted state mean µ is updated with the
measurement zt. Moreover, this Kalman gain allows us to get very short
expressions for the belief mean and covariance: the mean becomes simply

µ = µ+K(z − Cµ) (21)

and the covariance requires some additional manipulation

K = ΣCTQ−1

⇔KC = ΣCTQ−1C︸ ︷︷ ︸
=Σ−1−Σ

−1

⇔ Σ = (I −KC)Σ

(22)
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The Kalman gain can be rewritten as follows, so that it does not depend on
Σ anymore:

K = ΣCTQ−1

= ΣCTQ−1(CΣCT +Q)(CΣCT +Q)−1

= Σ(CTQ−1CΣCT + CT )(CΣCT +Q)−1

= Σ(CTQ−1CΣCT + Σ
−1

ΣCT )(CΣCT +Q)−1

= Σ(CTQ−1C + Σ
−1︸ ︷︷ ︸

Σ−1

)ΣCT (CΣCT +Q)−1

= ΣCT (CΣCT +Q)−1

(23)

After this algebraic tour de force we arrive to the update expressions for
the mean and covariance of the new updated belief state bel(xt) ∼ N (µt,Σt),
after restoring the time indices t

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)

−1

µt = µt +Kt(zt − Ctµt)
Σt = (I −KtCt)Σt

(24)

Note also that this step only requires a single matrix inversion. This con-
cludes the derivation of the Kalman filter.

4 Extended Kalman filter

The Kalman filter assumes a linear system, but this dramatically decreases
the scope of the application of this filter. The extended Kalman filter (EKF)
addresses this problem by linearization of the system, thus allowing the ap-
plication of the filter framework for nonlinear systems.

We consider the following discrete time nonlinear system:

xt = g(xt−1, ut, εt)

zt = h(xt, δt)
(25)

where xt ∈ Rn, ut ∈ Rm, and zt ∈ Rk are the state, control input, and
measurement vectors, as before, and the noise sources εt ∈ Rp and δt ∈ Rq

are both normally distributed with zero mean and identity variance2, both
uncorrelated with the state vector. Note that there is no loss in generality of
having unit variance in the noise, since the g and h functions may internally

2That is, the covariance matrix is the identity matrix.
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scale the noise to arbitrary covariances. In fact, the model is sufficiently
generic to include any nonlinear effect of the noise into the system evolution
and measurements. Note also that the dimensionality of the dimensions of
the noise sources, p and q, are unrelated with the dimensionality of the state
and of the measurement.

4.1 Prediction step

For the prediction step we linearise the first equation in (25) around xt−1 =
µt−1 and εt = 0

xt ' g(µt−1, ut, 0) +Gx
t (xt−1 − µt−1) +Gε

tεt

= Gx
t xt−1 + [g(µt−1, ut, 0)−Gx

t µt−1]︸ ︷︷ ︸
new input u′t

+Gε
tεt (26)

where Gx
t and Gε

t are the Jacobians of g(ut, µt−1, εt) with respect to the first
and third arguments, taken at the linearization point, defined as

Gx
t =

∂g

∂x
(µt−1, ut, 0) =


∂g1(x,u,ε)

∂x1
· · · ∂g1(x,u,ε)

∂xn
...

. . .
...

∂gn(x,u,ε)
∂x1

· · · ∂gn(x,u,ε)
∂xn


(µt−1,ut,0)

(27)

where g(x, u, ε) = [g1(x, u, ε) · · · gn(x, u, ε)]T and x = [x1 · · ·xn]T , and as

Gε
t =

∂g

∂ε
(µt−1, ut, 0) =


∂g1(x,u,ε)

∂ε1
· · · ∂g1(x,u,ε)

∂εp
...

. . .
...

∂gn(x,u,ε)
∂ε1

· · · ∂gn(x,u,ε)
∂εp


(µt−1,ut,0)

(28)

where g(x, u, ε) = [g1(x, u, ε) · · · gn(x, u, ε)]T and ε = [ε1 · · · εp]T . The above
linearization defines a linear system with the state transition model

xt = A′txt−1 +B′tu
′
t + ε′t (29)

where A′t = Gx
t , B

′
t = I, u′t = g(µt−1, ut, 0)−Gx

t µt−1, and ε′t = Gε
tεt. The noise

term ε′t depends linearly from a zero mean and identity covariance normal
random variable. Thus, it is also normally distributed with zero mean and
covariance given by

R′t = E[Gε
tεt(G

ε
tεt)

T ]

= Gε
tE[εtε

T
t ](Gε

t)
T

= Gε
t(G

ε
t)
T

(30)
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since the covariance of εt is the identity matrix. Then, according to (11), the
predicted state mean is

µt = A′tµt−1 +B′tu
′
t

= Gx
t µt−1 + g(µt−1, ut, 0)−Gx

t µt−1

= g(µt−1, ut, 0)

(31)

and the covariance is

Σt = A′tΣt−1A
′
t
T

+R′t

= Gx
t Σt−1(Gx

t )
T +Gε

t(G
ε
t)
T

(32)

To summarize, the prediction step of the EKF uses these expressions:

Gx
t =

∂g

∂x
(µt−1, ut, 0)

Gε
t =

∂g

∂ε
(µt−1, ut, 0)

µt = g(µt−1, ut, 0)

Σt = Gx
t Σt−1(Gx

t )
T +Gε

t(G
ε
t)
T

(33)

4.2 Update step

Since the measurement model in EKF is also nonlinear, we will also linearize
it. To to so, we linearize (25) around xt = µt and δt = 0:

zt ' h(µt, 0) +Hx
t (xt − µt) +Hδ

t δt

= Hx
t xt + [h(µt, 0)−Hx

t µt] +Hδ
t δt

(34)

where Hx
t and Hδ

t are the Jacobians of h(µt, δt) with respect to each one of
its arguments

Hx
t =

∂h

∂x
(µt, 0)

Hδ
t =

∂h

∂δ
(µt, 0)

(35)

Note that in the each step, the relevant model equation is linearized at the
latest best estimate of the state: µt−1 for the prediction step, and µt for
the update one. Under this approximation, expression (34) can be seen as a
linear observation model

z′t = C ′txt + δ′t (36)
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where z′t = zt − h(µt, 0) +Hx
t µt, C

′
t = Hx

t , and δ′t = Hδ
t δt. The Kalman gain

is computed as in (24), with the appropriate substitutions:

Kt = Σt(H
x
t )T (Hx

t Σt(H
x
t )T +Hδ

t (Hδ
t )T )−1 (37)

noting that δ′t is normal with zero mean and with covariance Hδ
t (Hδ

t )T , ob-
tained similarly to (30). The state mean and covariance follows (24), using
now z′t

µt = µt +Kt[zt − h(µt, 0) +Hx
t µt −Hx

t µt]

= µt +Kt[zt − h(µt, 0)]
(38)

Σt = (I −KtHt)Σt (39)

In summary, these are the expressions for the update step of the EKF:

Hx
t =

∂h

∂x
(µt, 0)

Hδ
t =

∂h

∂δ
(µt, 0)

Kt = ΣtH
T
t (HtΣtH

T
t +Hδ

t (Hδ
t )T )−1

µt = µt +Kt[zt − h(µt, 0)]

Σt = (I −KtH
x
t )Σt

(40)

This concludes the derivation of the Extended Kalman Filter (EKF).
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