Architecture Paradigms for Robotic Applications

Monica Reggiani
Dept. of Management and Engineering
University of Padua

October, 2008
Introduction

- Robots supporting people in everyday tasks
 - deal with dynamic environments
 - ensure safe interaction with human beings
 - require complex multifunctional structure for control
 - interact with external systems (embedded computing and communication devices)

- Several architectures proposed:
 - orocos, marie, martha, miro, claraty, yarp, urbi, ...
 - lack of a common, suitable solution
Distributed Technology Research

- **Distributed Object Architecture (DOA)**
 - based on object oriented approach
 - improvement over first platform independent solutions (sockets, Java RMI, ...)

- **Component Based Architecture (CBA)**
 - based on the concept of software component
 - support of deployment of multiple components from multiple sources

- **Service Oriented Architecture (SOA)**
 - based on the concept of service
 - provide loosely coupled, highly dynamic applications
Distributed Object Architecture (DOA)

- DOA applications are:
 - composed of *objects*, individual units of running software that combine functionality and data (OMG)
 - run on multiple computers to act as a scalable computational resource
- Interaction supported through the definition of *interfaces*:
 - declare the available operations of a distributed object
 - clients know which requests they are allowed to perform
 - DOA system knows how to marshall/unmarshall the arguments
- Fine-grained interfaces, high level of control on concurrency
DOA Standards and Middlewares
Common Object Request Broker Architecture

- Common Object Request Broker Architecture (CORBA)
 - Vendor independent specification promoted by the Object Management Group (OMG)
DOA Robotic Applications

Early solutions

- Dynamic interconnection of heterogeneous and geographically distributed systems
 - Naming Service, Synchronous Method Invocation (SMI)

- Scalable and versatile data distribution tools
 - CORBA Event and Notification Service
DOA Robotic Applications

Early solutions

- Dynamic interconnection of heterogeneous and geographically distributed systems
- Scalable and versatile data distribution tools

Source: *Miro - Middleware for Mobile Robot Applications*, H. Utz, S. Sablatnög, S. Enderle, G. Kraetzschmar
DOA Robotic Applications
Real-time and Embedded Systems (1)

- Dynamic interconnection of heterogeneous and geographically distributed systems
 - Naming Service, Synchronous Method Invocation (SMI)
- Scalable and versatile data distribution tools
 - CORBA Event and Notification Service
- Concurrent execution of several tasks
 - Asynchronous Method Invocation (AMI)
- Real-Time requirements and control over priority of actions
 - Real-Time CORBA (Threadpool, Banded Connections, Priority model)
- Security and concurrency management
 - CORBA Concurrency and Security Service
DOA Robotic Applications
Real-time and Embedded Systems (2)

Source: Designing Distributed, Component-based Systems for Industrial Robotic Applications,
M. Amoretti, S. Caselli, M. Reggiani
Component Based Architecture (CBA)

Introduction

- **Software component:**
 - unit of composition with contractually specified interface
 - strong separation between interface and implementation

- **Objects are not candidate for components:**
 - objects exist at run time, components are binaries that are deployed
 - objects tightly coupled with other objects, components autonomous
 units whose purpose is well defined and understood
 - objects are generally much more fine-grained than components
CBA Standards and Middleware
CORBA Component Model (CCM)

- CORBA Component Model (CCM) introduces:
 - features to simplify and automate the construction, composition, and configuration of components
 - steps in the application development lifecycle
CBA Standards and Middleware

Internet Communication Engine (ICE)

- Developed by ZeroC group as an alternative to CORBA OMG standard
- Aims at avoiding unnecessary complexity
- Supports a large number of languages (C/C++, Java, C, PHP, Visual Basic)
- Two main services:
 - ICEGrid
 - ICEStorm

www.zeroc.com/ice.html
CBA Robotic Applications

Why are components a good idea for robotics?

- Effort required to develop complete control software before being able to start with the implementation of research issues:
 - develop components for mature algorithms, sensors, and actuators
- Domain characteristics particularly suited the CBA approach:
 - inherent complexity, requirement for flexibility, distributed environments, heterogeneity of hardware and operating systems.

Source: *Towards component-based robotics*, A. Brooks et al.
CBA Robotic Applications

RT-Middleware

- simplify system integration through a methodology for the creation of robotics technology component and a framework for their composition

Source: *RT-Middleware: Distributed Component Middleware for RT (Robotic Technology)*. N. Ando et al.
CBA Robotic Applications

ORCA

- Open source implementation framework for developing component-based robotic systems.

Elements of the Orca framework:
- Objects
- Communication Patterns
- Transport Mechanism
- Components

Source: www.zeroc.com/ice.html
Service Oriented Architecture

- based on the concept of service,
 - a unit of work executed by a service provider to achieve the desired results for a service consumer
 - higher-level abstraction for organizing applications for large scale, open environment.

- Key elements for SOA:
 - Loose coupling
 - Implementation neutrality
 - Flexible configurability
 - Persistence
 - Granularity
 - Teams
Service Oriented Architecture

Source: Service-Oriented Computing: Key Concepts and Principles M. N.Huhns, M. P. Singh
Service-Oriented Architecture

OWL-S

- OWL-S, an ontology built on top of Web Ontology Language (OWL) for the Semantic Web.
- Objectives:
 - automatic service discovery
 - automatic service invocation
 - automatic service composition and interoperation
- ... still under development
Service-Oriented Architecture
Web Services

- Web service: “a software system designed to support interoperable machine-to-machine interaction over a network” [W3C]

Protocols and standards:

- Web Services Description Language (WSDL)
- Universal Description, Discovery and Integration (UDDI)
- SOAP
- XML

Source: en.wikipedia.org/wiki/Web_service
SOA Robotic Applications

- First phase:
 - limited exploitation of SOA protocols and tools
- Second phase:
 - (re)design according to service-centric models (OWL-S, WSRF)
SOA Robotic Applications

Ubiquitous Robotic Service Framework (1)

- Traditional networked robotic system

Source: Service-Oriented Integration of Networked Robots with Ubiquitous Sensors and Devices Using the Semantic Web Services Technology, Young-Guk Ha, Joo-Chan Sohn and Young-Jo Cho
SOA Robotic Applications

Ubiquitous Robotic Service Framework (2)

- USRF approach

Source: Service-Oriented Integration of Networked Robots with Ubiquitous Sensors and Devices Using the Semantic Web Services Technology, Young-Guk Ha, Joo-Chan Sohn and Young-Jo Cho
Three main components: *Robotic Agent*, *Environmental Knowledge Repository*, *Device Web Services*

Source: *Service-Oriented Integration of Networked Robots with Ubiquitous Sensors and Devices Using the Semantic Web Services Technology*, Young-Guk Ha, Joo-Chan Sohn and Young-Jo Cho
SOA Robotic Applications

PEIS Ecology

- formal description of the functionalities;
- framework for discovery and run-time composition;
- mechanism for semantic interoperability
Conclusions

- Different paradigms have different characteristics and properties making them suitable for different robotic applications.

- **Distributed Object Architecture (DOA)**
 - fine-grained concept of *object*, suitable for lower layers;

- **Component Based Architecture (CBA)**
 - suitable for mid-tiers to develop autonomous *components* that can be exchanged and composed;

- **Service Oriented Architecture (SOA)**
 - loosely couple architecture where interacting entities (*service*) can be accessed without previous knowledge