
Workshop on Perception for Mobile Robots Autonomy 2012

Assisted Teleoperation of Quadcopters Using Obstacle
Avoidance ∗

Assisted Teleoperation of Quadcopters Using Obstacle
Avoidance ∗

Assisted Teleoperation of Quadcopters Using Obstacle
Avoidance ∗

Assisted Teleoperation of Quadcopters Using Obstacle
Avoidance ∗

João Mendes, Rodrigo Ventura

Abstract:
Teleoperation of unmanned aerial vehicles often de-

mands extensive training. Yet, even well trained pilots are
prone to mistakes, resulting frequently in collisions of the
vehicle with obstacles. This paper presents a method to
assist the tele-operation of a quadrotor using an obstacle
avoidance approach. In particular, rough map of the nearby
environment is constructed using sonar sensors. This map
is constructed using FastSLAM to allow tracking of the ve-
hicle position with respect to the map. The map is then used
to override operator commands that may lead to a collision.
An unknown and GPS denied environment is considered.
Experimental results using the USARsim simulator are
presented.

Keywords: Collision avoidance, 3D FastSLAM, Quad-
copter, Occupancy Grid Mapping

1. Introduction
A quadcopter is an aircraft propelled by four rotors.

This type of vehicle fits in the Vertical Take Off and Landing
(VTOL) category as they can successfully perform vertical
take offs, landings and hovering despite being heavier than
air. The advantages of VTOLs to other flying mechanisms
are notorious, as shown in [1].

However, flying a quadrotor is not a simple task: for a
pilot to have a safe flight and control the vehicle as desired,
significant experience is required. Even extensively trained
pilots may face situations where it is difficult to guarantee
a safe flight due to, for instance, loss of visual contact. A
method to automatically avoid collisions is, therefore, a
major necessity.

The presented solution is an assistive algorithm for
tele-operation of a quadrotor in order to avoid collisions
based on a FastSLAM [2] approach using an occupancy
grid map [3]. Since the purpose of this work is neither a
detailed map of the environment nor a precise measure-
ment of obstacles positions, the problem can be efficiently
addressed by knowing the relative position of the quadro-
tor in relation to the object. After knowing the vehicle’s
position and map, a decision making process based on
danger assessment, performed by a classifier, is applied.
This classifier overrides the user’s inputs whenever they
compromise the quadcopter’s physical integrity in the near
future. Overriding may range from simple velocity reduc-
tion to, in extreme cases, an evasive maneuver. Unknown
areas are, for the sake of safety, always considered as oc-
cupied. The main difference between our approach and
a simple reactive algorithm is memory. Unlike a purely

∗This work was supported by the FCT projects [PEst-
OE/EEI/LA0009/2011] and [PTDC/EIA-CCO/113257/2009].

reactive methodology, if the map is kept in memory it is
possible to avoid crashes in sonar’s blind spots. The full
architecture is presented in Figure 1.

Fig. 1. Full architecture of the proposed approach

3D Simultaneous Localization and Mapping (SLAM)
in Unmanned Aerial Vehicles (UAV) using lasers has been
studied but typically including techniques, such as loop
closure algorithms [4]. As for obstacle avoidance method-
ologies for UAVs, literature mostly addresses for path re-
planing topics [6]. This paper differs from the above in that
we aim at a rough and low complexity map, and thus more
time efficient.

We consider as a simulation test bed a quadrotor
equipped with an Inertial Measuring Unit (IMU), an al-
timeter, and six sonars: one above each of the propellers
pointing sideways, one above and one below the main body
of the quadcopter.

2. Methodology
2.1. FastSLAM
Correct attitude is assumed to be given at all times by

an IMU since accurate attitude estimations can be provided
by a commercial solution, thus the 6D problem (position
and attitude) is reduced to a 3D problem (position only).
The objective of SLAM is to estimate the position and the
map of a robot simultaneously. Let x1:t denote the path of
the robot, m the map, z1:t all measurements and u1:t all
control inputs where 1 : t represents the time step from 1
to t. To solve the SLAM problem we use the FastSLAM
approach proposed by Motermerlo et al. [5]. By performing
a factorization of the posterior:

p(x1:t,m|z1:t, u1:t) (1)

decomposing SLAM into a path estimation problem and a
mapping problem (2) hereby solved by a combination of a
Particle Filter with an occupancy grid mapping algorithm.

p(x1:t|z1:t, u1:t)p(m|z1:t, x1:t) (2)

1

The occupancy grid mapping algorithm uses a straight-
forward application of the inverse sensor model described
in [7] where the posterior probability of the map is approx-
imated as the product of the probability of each cell (3).
This probability represents the belief on the occupancy of
each individual cell.

p(m|z1:t, x1:t) =
∏
i

p(mi|z1:t, x1:t) (3)

Each cell not being updated is subject to a slow decay
towards the value of the prior p(mprior), in order to in-
troduce a forgetness factor to all long time non-observed
cells.

Localization estimation is provided by a bootstrap
Particle Filter [8]. It is a Bayesian state estimation method
which approximates the posterior bel(xt) = p(xt|zt, ut)
by a set of weighted particles St

St = {s[1]
t , s

[2]
t , ..., s

[N]
t }

= {[x[1]
t w

[1]
t m

[1]], [x
[2]
t w

[2]
t m

[2]], ..., [x
[N]
t w

[N]
t m[N]]}

(4)

where each particle st contains a different hypothesis

x̃
[n]
t = [X [n]Y [n]Z [n]]T (5)

of the state to estimate xt = [XrYrZr]
T . Multiple parti-

cles, considering a total number equal to N , are used and
to each one is associated a weight, wt, representing the
importance of that specific hypothesis.

For each iteration of the particle filter a predict and
an update step are performed. The predict step models
the effects of the control inputs ut on each particle of
St−1 by sampling from the motion model distribution. The
referenced motion model is identical to the dynamic model
applied by the USARSim.

The particle weights are computed in the second step.
In this phase, a measurement model is used to evaluate
the weight of each particle based on sensors information.
This weight is updated by the likelihood of the sensor
measurements zt given the prediction x̄t and the map m.

p(zt|m, x̄t) (6)

The weight of each particle results from the joint like-
lihood of all measurements, given the map and the path.
These measurements are given by (1) sonars and (2) the
altimeter. The sonar measurements are modeled with a
Gaussian distribution:

P (zit|m[n], x̄
[n]
t) =

1

σdist
√

2π
e
−
(
zit−d̄

[n]
t

)2

/2σ2
dist (7)

where zit stands for measurement of sonar i, m for the
map and d̄[n]

t is the Euclidean distance between position
hypothesis x̄[n]

t and the first occupied cell in the map of
the n-th particle. Note that equation (7) is applied for each
sonar.

The altimeter measurements are modeled with another
Gaussian

P (ht|m[n], x̄
[n]
t) =

1

σalt
√

2π
e
−
(
ht−Z̄[n]

t

)2

/2σ2
alt (8)

where ht is the altimeter measurement. By using the al-
timeter readings it is possible to significantly reduce the
uncertainty along the vertical axis. The final weight w[n]

t of
each particle is equal to the multiplication of all involved
likelihoods, assuming conditional independence given the
robot position and map

w
[n]
t = P (ht|m[n], x̄

[n]
t) ·

∏
i

P (zit|m[n], x̄
[n]
t) (9)

In order to determine a single position estimation we
choose the particle with the highest weight from the set

x̂t = x̄
[n∗]
t , where n∗ = arg max

i∈{1,...,N}
w

[i]
t (10)

2.2. Decision Block
The inputs for the Decision Block are the position esti-

mation x̂t and a binarized version of the mapm. The thresh-
old adopted for the binarization is p(mi

occupied) < 0.5 in
order to consider the never observed cells as occupied. By
analysis of the map and the vehicle estimated velocity it
is possible to predict how far away the object is and how
long it takes if we maintain the current speed to col-
lide with it. This concept is known as Time To Collision
(TTC) and is a crucial step in the classification of the dan-
ger levels. The global flow chart of the Decision Block is
presented in Figure 2.

Fig. 2. Flow chart of the Decision Block.

To successfully avoid crashes, the position of obsta-
cles has to be known as well as the direction to which the
robot is flying. The volume check corresponds to the ex-
trusion of a square centered on the quadcopter’s position,
along the velocity vector, as illustrated in Figure 3. The
size of this square, b, encompasses the quadrotor volume
while a is a visibility bound. Defining this volume enables
the algorithm to find which is the position of the closest
occupied cell.

v

a

b

Vehicle

Fig. 3. Graphical definition of the volume check

Upon having the velocity estimation and the distance
to the closest cell it is easy to compute the TTC and use
it as a danger assessment. The classifier block acts as a
multiplexer by choosing an input, and forwarding it to the
vehicle, given a certain TTC. The threat levels, together
with the contingency actions considered, are presented in
Figure 4 and explained below.
– No Action: For the given TTC the algorithm considers

that no threat exists and no action is performed on the
inputs, meaning that the vehicle is fully controlled by
the user.

– Slow: If the TTC falls into the given interval the quad-
copter is considered to be in medium danger and user’s
inputs will be limited. In order for the vehicle to increase
its TTC to a safe value, thus causing the decision block
leave the Slow threat level, the velocity applied to the
vehicle, denoted by vcommand, is

vcommand =
dobstacle

TTCTHSLOW

(11)

where dobstacle represents the distance between the ve-
hicle and the obstacle, and TTCTHSLOW

the threshold
between the Slow and No action stage Figure 4.

– Stop: At this level, threat is considered to be high and
velocity is immediately set to zero making the vehicle
hover.

– Evasive Maneuver: At this level the threat is considered
to be extremely high and the solution to avoid collision
in this situation is to give a velocity in the opposite
direction of the current movement. By doing so, the
distance while decelerating is much lower than in the
STOP stage.

Fig. 4. Threat levels

Consider as an example that the vehicle is ordered to
move towards an unknown part of the map. Since no infor-
mation regarding those cells is yet known, the algorithm
will consider them as occupied for safety reasons. There-
fore, the above mentioned levels are equally applied. A
problem occurs whenever the attitude of the vehicle is
higher than half the field of view of the sonar, i. e., the

sonar will not be able to check whether the volume in the
desired direction is occupied or not as it is not pointing
there. By direct application of the computation and selec-
tion of the danger level, it is possible to conclude that a
Slow order is given and the velocity will lower. The sonar
will then point back towards the direction of the movement,
due to velocity reduction, and the distance to the object is
updated. The algorithm will cause the vehicle to alternate
between acceleration and deceleration in order to maintain
knowledge of where it is heading. The emergence of this
behavior can be seen in our experiments.

3. Results
The full architecture was implemented and tested in the

USARSim environment. A total number of particles of 10,
together with σdist = 2, σalt = 2, FoV = 30◦, maximum
sonar range equal to 5 meters and a square cell with length
equal to 1 meter was considered. The examples inputs are
the user’s commands, attitude and sonars readings. Neither
the map nor the position is provided by the simulator. Note
that the FastSLAM and the decision block are running
online during real time simulation on USARSim.

In the first example the robot was ordered a full speed
movement towards a wall out of sonars range. As it is
observable from Figure 5, the vehicle is, up until around 7
seconds, consecutively lowering and increasing its distance
to the obstacle. Since this distance keeps oscillating it
means that no real obstacle is there but, as it is the first
time the area is mapped, the algorithm is updating the cells
to free while moving. After 7 seconds the distance starts to
lower meaning a real obstacle was found.

0 5 10 15
1

2

3

4

5

6

7

Time [s]

D
is

ta
nc

e
[m

]

Fig. 5. Distance between the best particle to the first obsta-
cle

Figure 6 shows the estimated velocity of the vehicle
along time. Note that the velocity is also oscillating. The
user is ordering a full speed movement (5m/s) but the
classifier applies a Slow override. When the obstacle is
sensed to be further away from the robot, the inputs are
once again given to the user. When the algorithm perceives
that the vehicle is moving towards an obstacle, once again
after 7 seconds, an override is imposed and the velocity
fully limited by the classifier and lower till zero. By fusing
the information from both figures it is possible to see that
the vehicle stopped its movement at, approximately, 1.3
meters from the wall despite being constantly ordered by

the user to move in that direction. If, at this point, the robot
were ordered to fly in the opposite direction the vehicle
would fly at full speed since those cells are known to be
free according to the map.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [s]

V
el

oc
ity

 [m
/s

]

Fig. 6. Estimated velocity of the quadrotor corresponding
to Fig. 5

In the second example the trajectory performed has
three distinct phases: the robot was initialized far from a
wall and a velocity imposed towards it; a movement along
the wall; a separation and re-approximation to the wall.
With this experiment the main benefit of our approach
facing a purely reactive method is shown. That distinction
is proven useful in the final part of the movement where
the vehicle is expected to keep a memory of the obstacle
previously seen. All movements were performed at full
speed. Results are presented in Figures 7 and 8.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x[m]

y[
m

]

Occupied

Free

Real

Fig. 7. XY cut of the 3D map of the best particle at the
end of the movement. The Real labeled arrow indicates the
limit of the groundthruth wall location

During this experiment, the algorithm faces two near
collision situations. In both cases, the program managed to
fulfill its objective and avoid the crash despite the orders
from the user to continue its trajectory towards the wall.
Although both collisions were avoided a major difference
arises between them. The second time the algorithm was
moving towards the wall it managed to avoid the crash at a
higher distance from the wall. After sensing the obstacle

24 26 28 30 32 34 36 38
22

24

26

28

30

32

34

36

38

40

42

x[m]

y[
m

]

Particle Filter

Real

Real FastSLAM

Fig. 8. Localization of the best particle at the end of
the movement. The arrows represents the limits of the
groundthruth wall and the obtained map.

once, it is able to keep a localization in relation to it and it
is also able to prevent crashes more effectively.

It is noticeable that, despite having drift away from
the real position, the algorithm managed to build a map,
Figure 7, according to the belief of its position and localize
itself on it. Since our goal is to localize the robot relatively
to our map, we argue that the algorithm’s performance is
not directly compromised by the error between the real and
the estimated position.

The obtained results match our expectations and can
be seen as a proof of concept towards a real world imple-
mentation.

4. Conclusions
The main objective of this work is to develop an as-

sisting tele-operation algorithm for quadcopters with the
purpose of avoiding collisions with obstacles. The desired
solution considered as head objective the safety of the
quadcopter even in situations where user’s commands were
contrary. Whenever confronted with an unknown area,
the algorithm overrides the inputs in order to reduce un-
certainty. The main objective was successfully achieved
in simulation using a FastSLAM approach for simulta-
neous localization and mapping combined with a danger
classification methodology, in order to classify and act cor-
respondingly in any situations. As for future work, we are
currently working at a real world implementation of the
proposed method.

AUTHORS
João Mendes – Institute for Systems and Robotics,
Instituto Superior Técnico, Portugal, e-mail:
mendes.joao.p at gmail.com
Rodrigo Ventura – Institute for Systems and Robotics,
Instituto Superior Técnico, Portugal, e-mail:
rodrigo.ventura at isr.ist.utl.pt

References
[1] S. Bouabdallah, Design and Control of an Indoor

Micro Quadrotor. Proceedings of International Con-

ference on Robotics and Automation, 2004.

[2] A. Stentz, D. Fox and M. Montemerlo, FastSLAM: A
Factored Solution to the Simultaneous Localization
and Mapping Problem with Unknown Data Associa-
tion. Proceedings of the AAAI National Conference
on Artificial Intelligence, 2003.

[3] A. Elfes, Occupancy grids: A probabilistic frame-
work for robot perception and navigation. PhD thesis,
Carnegie Mellon University, 1989

[4] C. Stachniss, D. Hähnell, W. Burgard, G. Grisetti, On
Actively Closing Loops in Grid-based FastSLAM.
Advanced Robotics, 2005.

[5] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit,

FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem. Proceedings of
the AAAI National Conference on Artificial Intelli-
gence, 2002.

[6] Z. He, R. Iyer, P. Chandler, Vision-Based UAV Flight
Control and Obstacle Avoidance. Proceedings of the
American Control Conference, 2006.

[7] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The
MIT Press, 2005

[8] N. Gordon, D. Salmond, A. Smith, Radar and Signal
Processing. IEEE Proceedings,1993

	Introduction
	Methodology
	FastSLAM
	Decision Block

	Results
	Conclusions

