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Abstract- The Extended Kalman Filter (EKF) has been the 
de facto approach to the Sirnultanoous Localization and Mapping 
(SLAM) pmblem for nearly l i f ten  yean. However, the EKF has two 
serious deficiencies that prevent it fmm being applied to large, real- 
word environments: quadratic complexity and sensitivity to failurn 
in data association. FastSLAM, an alternative approach based on the 
bo-BlackweUized Particle Filter, has been shown l o  scale logarith- 
mically with the number of landmarks in the map [lo]. This effi- 
ciency enables FastSLAM to be applied to environments far larger 
than could be handled by the EKF. In this paper, we will show that 
FastSLAM also substantially outperforms the EKF in envimnments 
with ambiguous data association. The performance of the two algo- 
rithms is compared on a real-world data set with various levels of 
odomelric noise. In addition, we will show how negative inlormation 
can be incorporated into FastSLAM in order to impmve the accuracy 
of the &mated map. 

I. INTRODUCTION 

The problem of simultaneous localization and mapping, 
also known as SLAM, has attracted immense attention in 
the mobile robotics literature. SLAM addresses the prob- 
lem of building a map of an unknown environment from a 
sequence of noisy landmark measurements obtained from 
a moving robot, Since robot motion is also subject to error, 
the mapping problem necessarily induces a robot localiza- 
tion problem-hence the name SLAM. SLAM is consid- 
ered by many to he an essential capability for autonomous 
robots operating in environments where precise maps and 
positioning are not available [3], [7], (141. 

The dominant approach to the SLAM problem was in- 
troduced in a seminal paper by Smith, Self, and Cheese- 
man [131. This paper proposed the use of the Extended 
Kalman Filter (EKF) for incrementally estimating the joint 
posterior distribution over robot pose and landmark po- 
sitions. In the last decade, this approach has found 
widespread acceptance in field robotics, as a recent tuto- 
rial paper documents 121. 

EKF-based approaches to SLAM suffer from two im- 
portant limitations. First, sensor updates require time 
quadratic in the total number of landmarks K in the map. 
This complexity stems from the fact that the covariance 
matrix maintained by the Kalman filter has O ( K 2 )  ele- 
ments, all of which must he updated even if just a sin- 
gle landmark is observed. Quadratic complexity limits the 
number of landmarks that can be handled by this approach 

Michael Montemerlo and Sebastian Thmn are with the Robotics 
Instilute 81 C m e g i e  Mellon Univerbity, Pinsburgh, Pennsylvania. 
Email: (mmde, thmm}@cs.cmu.edu 

0-7803-7736-2/03/$17.00 02003 IEEE 

to only a few hundred-whereas natural environment mod- 
els frequently contain millions of features. 

Second, EKF-based SLAM algorithms rely heavily on 
the assumption that the mapping between ohservations and 
landmarks is known. Associating a small number of ob- 
servations with incorrect landmarks in the EKF can cause 
the filter to diverge. The problem of determining the cor- 
rect mapping of observations to landmarks is commonly 
referred to as the data association, or correspondence prob- 
lem. 

An alternative approach to the SLAM problem has been 
introduced that factors the SLAM posterior into a local- 
ization problem and K independent landmark estimation 
problems conditioned on the robot pose estimate. This al- 
gorithm, called FastSLAM [lo], uses a modified particle 
filter for estimating the posterior over robot paths. Each 
particle possesses K independent Kalman filters that esti- 
mate the landmark locations conditioned on the panicle’s 
path. The resulting algorithm is an instance of the Rao- 
Blackwellized particle filter [51, [ l l l .  By representing par- 
ticles as binary trees of Kalman Filters, Observations can be 
incorporated into FastSLAM in O(M1ogK) time, where 
hf is the number of panicles, and K is the number of 
landmarks. FastSLAM has been demonstrated with up to 
100,000 landmarks, problems far beyond the reach of the 
EKE 

Since each particle represents a different robot pose hy- 
pothesis, data association can be considered separately for 
every particle. This has two advantages. First, the noise 
of robot motion does not affect the accuracy of data asso- 
ciation. Second, if observations are associated correctly in 
some particles and incorrectly in others, the incorrect par- 
ticles will receive lower probabilities and will be removed 
in future resampling steps. In this way, FastSLAM can 
“forget” incorrect associations from the past, when other 
correct associations better explain the data. 

We will demonstrate that FastSLAM substantially out- 
performs the Kalman Filter on real-world data with am- 
biguous data association. By adding extra odometric noise, 
we will show that FastSLAM continues to perform well in 
situations in which the Kalman Filter inevitably diverges. 
In fact, FastSLAM can estimate an accurate map in this 
environment without any odometry at all. Finally, we will 
show how to incorporate negative information into Fast- 
SLAM. The consideration of negative evidence results in a 
measurable increase in the accuracy of the resulting map. 
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11. SLAM PROBLEM DEFINITION 

The SLAM problem is best described as a probabilistic 
Markov chain. The robot’s pose at time t will be denoted 
st.  If the robot is operating in a planar environment, this 
pose is the robot’s z, y position and its heading orientation. 
The robot’s environment is assumed to he comprised of K 
immobile, point landmarks. Each landmark is character- 
ized by its location in space, denoted Bi fo r i  = 1,. . . , K. 
The set of all landmarks will be denoted’as 0. 

Robot poses evolve according to a probabilistic law, re- 
ferred to as the motion model 

p(st 1 l L t ,  StGI) (1) 

The current pose st is a probabilistic function of the robot 
control ut and the previous  pose^^-^. 

To map its environment, the robot can sense landmarks. 
It may he able to measure range and bearing to landmarks, 
relative to its local coordinate frame. The measurement 
at time t will be denoted z t .  Sensor measurements are also 
governed by a probabilistic law, referred to as the measure- 
ment model: 

p(z t  I S t : & , , n t )  (2 )  

where nt is the index of the landmark currently being per- 
ceived. The observation zt is a probabilistic function of 
the current pose of the robot st and the landmark being 
observed On*. While robots often can sense more than 
one landmark at a time, we follow the common practice 
of assuming that each observation corresponds to a mea- 
surement of exactly one landmark [21. This convention is 
adopted solel; for mathematical convenience. It poses no 
restriction, as multiple landmark sightings at a single time 
step can be processed sequentially. 

In short, SLAM is the problem of determining the lo- 
cations of all landmarks 0 and robot poses st from mea- 
surements zt = zl,. . . : zt and controls d = i l l , .  . . ,ut. 
In probabilistic terms, this is expressed by the following 
posterior: 

Here we use the superscript to refer to a set of variables 
from time 1 to time t. If the associations nt are known, the 
SLAM problem is simpler. The posterior becomes: 

111. DATA ASSOCIATION 

In real-world SLAM problems, the mapping mt between 
observations and landmarks is rarely known. The total 
number of landmarks K is also unknown. Every time the 
robot makes an observation, that reading must he corre- 
sponded with an existing landmark or considered as com- 
ing from a previously unseen landmark. If this mapping 
is not obvious, picking the wrong association can cause 

Fig. 1. Mewurement Ambiguity: Two Imdmwls (shown as black clr- 
des) we close enough that the obsewation (shown as an n) plausibly 
could have come from eiIher one. 

a filter to diverge. A better understanding of how uncer- 
tainty in the SLAM posterior generates ambiguity in data 
association will demonstrate how simple data association 
heuristics often fail. 

Two factors contribute to uncertainty in the SLAM pos- 
terior: measurement noise and motion noise. Each leads 
to a different type of data association ambiguity. Noise in 
the measurement model will result in higher uncertainty 
in the landmark positions. Uncertain landmark positions 
will lead to measuremen: ambiguity, or confusion between 
nearby landmarks. (See Figure 1 .) A mistake due to mea- 
surement ambiguity will have a relatively small effect on 
estimation error because the observation plausibly could 
have come from either landmark. 
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Fig. 2. Motion Ambiguity: Obsewations may be associated with com- 
pletely different lmdmwks if the onentation of the robot changes a 
small mount. 

Ambiguity due to motion noise can have much more se- 
vere consequences. Higher motion noise will lead to bigber 
robot pose uncertainty after incorporating a control. If this 
uncertainty is high enough, different plausible poses of the 
robot will lead to drastically different data association hy- 
potheses for the subsequent observations. Motion ambigu- 
ity is easily induced if there is significant angular uncer- 
tainty in the robot pose estimate. (See Figure 2.) If mul- 
tiple observations are incorporated per timestep, the mo- 
tion of the robot will correlate the associations of all of 
the landmarks. .If a SLAM algorithm chooses the wrong 
association for a single landmark due to motion ambigu- 
ity, with high probability the rest of the associations will 
also he wrong. This will add a large amount of error to the 
robot’s pose, and often cause a filter to diverge. 

EKF SLAM algorithms commonly determine data asso- 
ciation using a maximum likelihood approach. Each obser- 
vation is associated with the landmark that was most likely 
to have generated it. At every time step, only the single 
most probable data association hypothesis is considered. 
More sophisticated EKF data association algorithms have 
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Fig. 3. The SLAM problem: The robot moves through poses SI . . . st 
based on a sequence of conuoIs, U, . . .u t .  As it rnwes, it observes 
nearby landmarks. At time t = 1. it observes landmark 81. The 
measu~ment is denoted 11. At time t = 2. it observes the other 
landmark. E z ,  and at time t = 3, it observes 81 again. The SLAM 
problem is concerned with estimating the locations of the landmarks 
and the robot's path from the conualr U and the measurements z. The 
gray shading illusuates the fact that knowledge of the robot's path 
renders the landmark positions El and $2 conditionally independent. 

been developed to consider the best association of all ob- 
servations simultaneously [12], however these approaches 
still rely on a single data association hypothesis at every 
timestep. In a scenario with ambiguous data association, 
an algorithm that maintains a single data association will 
sometimes pick the wrong association. If the ambiguity is 
due to the robot's motion, this will lead to divergence of 
the EKE 

The following sections of this paper will describe Fast- 
SLAM, an alternative approach to the SLAM problem that 
can sample over multiple data association hypotheses. Ex- 
perimental data will show that this results in better perfor- 
mance in situations with significant motion ambiguity. 

Iv. FASTSLAM WITH KNOWN DATA ASSOCIATION 

Figure 3 illustrates a generative probabilistic model (dy- 
namic Bayes network) that describes the SLAM problem. 
From this diagram it is clear that the SLAM problem con- 
tains important conditional independences. In particular, 
knowledge of the robot's path sl, . . . , st renders the indi- 
vidual landmark measurements independent. So for ex- 
ample, if an oracle provided us with the exact path of the 
robot, the problem of determining the landmark locations 
could be decoupled into K independent estimation prob- 
lems, one for each landmark. This conditional indepen- 
dence is the basis for the FastSLAM algorithm. 

This conditional independence implies that the poste- 
rior (4) can be factored as follows into a robot path pos- 
terior and a product of individual landmark posteriors con- 
ditioned on the robot's path: 

p(s ' ,  8 I zt, ut, n') 
K 

= p ( s t  I a t > u t , n t ) n p ( , ,  I S t , z t , l L t , u t )  ( 5 )  
,=I 

A derivation of this factorization is given in the Appendix. 
FastSLAM estimates the factored SLAM posterior using a 
modified particle filter, with K independent Kalman Filters 
for each particle to estimate the landmark positions condi- 
tioned on the hypothesized robot paths. The resulting al- 
gorithm is an instance of the Rao-Blackwellized particle 
filter [51, [ l l l .  

A. Panicle Filter Path Estimation 

FastSLAM estimates the robot path posterior in ( 5 )  us- 
ing a particle filter, in a way that is similar (hut not identi- 
cal) to the Monte Carlo Localization (MCLJ algorithm [I]. 
At each point in time, FastSLAM maintains a set of par- 
ticles representing the posterior p(st  1 zt, ut, nt), denoted 
St. Each particle st.lml E St represents a "guess" of the 
robot's path: 
St = { s " ' " ' ' } ~  = { ~ \ ' " ' , s ~ ~ ] ,  ..., st lml }m ( 6 )  

We use the superscript notation lml to refer to the m-th 
particle in the set. 

The particle set St is calculated incrementally, from the 
set at time t - 1, a robot control ut, and a measure- 
ment zt .  First, each panicle s ~ . [ ~ ]  in St-1 is used to gen- 
erate a probabilistic guess of the robot's pose at time t :  

(7) 

This guess is obtained by sampling from the probabilis- 
tic motion model. This estimate is then added to a tem- 
porary set of particles, along with the path , S - ~ , ~ ~ I .  Un- 
der the assumption that the set of particles in St-l is dis- 
tributed according to p(st-' I zt-', ut-', nt-') (which is 
an asymptotically correct approximation), the new panicle 
is distributed according to: 

(8) 

This distribution is commonly referred to as the proposal 
distribution of panicle filtering. 

After generating M particles in this way, the new set 
St is obtained by sampling from the temporary particle 
set. Each particle st3Im1 is drawn (with replacement) with 
a probability proportional to a so-called importance factor 
w ~ ] ,  which is calculated as follows [SI: 

Iml s p  - P ( S t  1 U t , S t - - l )  

p(st I zt - l ,  u t ,  n?') 

(9) 
target dist. - p ( ~ ' a [ ~ ]  I zt, ut: ri') 

The exact calculation of (9) will he discussed further be- 
low. The resulting sample set St is distributed accord- 
ing to an approximation to the desired path posterior 
p(st 1 zt :ut ,nt) ,  an approximation which is correct as 
the number of particles M goes to infinity. We also notice 
that only the most recent robot pose estimate .$; is used 
when generating the particle set St. This will allows us to 
silently "forget" all other pose estimates, rendering the size 
of each particle independent of the time index t. 

,$I = - 
proposal dist. p(st~[""l I ut, 
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B. Landmark Location Estimation 

FastSLAM represents the conditional landmark esti- 
mates p(0i I st; zt!ut ,nt)  in ( 5 )  using Kalman filters. 
Since this estimate is conditioned on the robot pose, the 
Kalman filters are attached to individual pose particles in 
St. More specifically, the full posterior over paths and 
landmark positions in the FastSLAM algorithm is repre- 
sented by the sample set 

Here and C!"' are the mean and covariance of the 
Gaussian representing the i-th landmark B,, attached to the 
m-th particle. In the planar robot navigation scenario, each 
mean is a two-element vector, and Elm1 is a 2 by 2 
matrix. 

The posterior over the i-th landmark pose 0, is easily 
obtained. Its computation depends on whether or not the 
landmark was observed, If the landmark is observed, we 
obtain: 

If landmark i is not observed, we simply leave the Gaussian 
unchanged: 

The FastSLAM algorithm implements the update equation 
(1 1) using the extended Kalman filter (EKF). As in exist- 
ing EKF approaches to SLAM, this filter uses a linearized 
version of the perceptual modelp(zt 1 .st; O,,,, nt) [Z]. One 
significant difference between FastSLAM's use of Kalman 
filters and that of the traditional SLAM algorithm is that the 
updates in the FastSLAM algorithm involve only a Gaus- 
sian of dimension two (for the two landmark location pa- 
rameters). In the EKF-based SLAM approach a Gaussian 
of size 2K + 3 has to be updated (with K landmarks and 
3 robot pose parameters). This calculation can he done 
in constant time in FastSLAM, whereas it requires time 
quadratic in K in the EKE 

C. Importance Weights 

Before the robot path particles can be resampled, the 
importance weights (9) must be calculated. For the sake 
of  brevity, the derivation of these importance weights has 
been omitted. The weight tut is equal to: 

This quantity can be computed in closed form because the 
landmark estimators are Kalman filters. For a complete 
derivation of the importance weights, see [lo]. 

V. FASTSLAM WITH UNKNOWN DATA ASSOCIATION 

If the mapping between observations and landmarks is 
known, the FastSLAM algorithm samples over robot paths, 
and computes the conditional landmark estimates analyti- 
cally for every path sample. When this mapping is un- 
known, FastSLAM can be extended to sample over pos- 
sible data associations as well as robot paths. There are 
several ways that this sampling can be done. 

A. Per-Particle Maximum Likelihood Data Association 

The simplest approach to sampling over data associa- 
tions is to adopt the maximum likelihood assignment pro- 
cedure used by EKFs, but on a per-particle basis. Parti- 
cles that pick the correct data association will receive high 
probabilities because they explain the measurements well. 
Particles that assign observations incorrectly will receive 
lower probabilities and he removed in future resampling 
steps. This procedure can be written as: 

Per-particle data association has two clear conse- 
quences. First, robot motion noise does not affect the ac- 
curacy of data association, given an appropriate number of 
particles. This fact alone will result in significantly im- 
proved performance in situations with substantial motion 
ambiguity. If applied to the scenario shown in Figure 2, 
some of the particles will represent the pose on the left and 
pick the first data assoociation hypothesis, and other parti- 
cles will pick the second hypothesis. 

The second consequence of per-particle data associa- 
tion is built-in, delayed decision-making. At any given 
time, some fraction of the particles will receive plausible, 
hut wrong data associations. In the future, new observa- 
tions may be received that clearly refute these prior assign- 
ments. These particles will receive low probability and be 
removed from the filter. As a result, the effect of  wrong 
associations made in the past can be removed from the fil- 
ter at a later time. This is in stark contrast to the EKF, in 
which the effect of an incorrect data association can never 
be removed once it is incorporated. Moreover, no heuris- 
tics are needed to manage the removal of old associations. 
This is done in a statistically valid manner, simply as a con- 
sequence of the resampling step of the particle filter. 

Naturally, sampling over robot paths and data associa- 
tions will require more particles than sampling over robot 
paths alone. Results in the next section will show that even 
a modest number of particles (A[ = 100) will result in 
substantially improved data association over the EKE 

B. Monte-Carlo Data Association 

Per-panicle data association can he taken a step fur- 
ther. Instead of assigning each particle the most likely 
data association, each particle can draw a random asso- 
ciation weighted by the probabilities of each landmark 
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having generated the observation. Using this approach 
FastSLAM will also generate correct data association hy- 
potheses given measurement ambiguity. If a small number 
of landmarks exhibit measurement ambiguity, this proce- 
dure can have a small positive effect on estimation accu- 
racy. However, uniformly high measurement error induces 
a combinatorial number of plausible data associations for 
every set of observations. This, in turn, would require 
exponentially more particles than the same scenario with 
known data association. 

C. Mutual Exclusion 

If more than one observation is received per timestep, 
mutual exclusion can be used to eliminate data association 
hypotheses that assign multiple measurements to the same 
landmark. Mutual exclusion can be applied in EKFs, hut 
only if the data associations of all observations are con- 
sidered simultaneously. This consideration is, in general, 
computationally difficult with a large number of observa- 
tions. Since FastSLAM maintains a set of data associa- 
tion hypotheses, the mutual exclusion constraint can be 
applied in a greedy fashion. Each observation is associ- 
ated with the most likely landmark in each particle that has 
not received an observation yet. Since the greedy heuris- 
tic will sometimes apply the mutual exclusion constraint 
incorrectly, more particles will be needed when applying 
this technique. However, mutual exclusion makes the pro- 
cess of deciding when to add new landmarks a much sim- 
pler problem. Instead of incorrectly assigning an observa- 
tion from an unseen landmark to a nearby, previously seen 
landmark, mutual exclusion will force the creation of a new 
landmark. 

D. Negative Information 

Modeling the world as a collection of point landmarks 
is an affirmative representation. It allows us to make infer- 
ences about where objects are in the world, but not where 
objects are not. However, inferences in feature-based state 
spaces can be made using the absence of observations, of- 
ten referred to as “negative information.’’ In particular, if 
a robot expects to see a landmark and does not, the robot 
should become less confident that this landmark actually 
exists. 

In order to exploit negative information in SLAM, we 
will borrow a technique normally used for making evi- 
dence grids. For each landmark in every particle, we will 
estimate a single binary variable r indicating whether this 
landmark represents a real landmark in the world. Instead 
of keeping track of the probability ~ ( T I z ~ ) ,  we will instead 
estimate the log odds ratio: 

The log-odds formulation of the binary Bayes filter is ex- 
tremely easy to update. A complete description of this pro- 

cedure is given in [15]. In short, every time the landmark 
is observed, a constant value is added to the log odds ratio. 
Every time the landmark is not observed when it should 
have been, a constant value is subtracted from the log odds 
ratio. If this ratio falls below a given threshold, the land- 
mark is considered to be spurious and removed. 

Negative information is pmicularly useful for removing 
spurious features from the map. These features may be 
the result of false positives generated by the feature detec- 
tion algorithm, or they may correspond to moving objects. 
Results in the next section will show that using negative 
information dramatically reduces the number of spurious 
landmarks in the estimated map. 

VI. EXPERIMENTAL RESULTS 

The FastSLAM aid  EKF algorithms were compared us- 
ing the University of Sydney’s Victoria Park data set. An 
instrumented vehicle with a laser rangefinder was driven 
through Victoria Park. Encoders on the vehicle recorded 
velocity and steering angle. Ranges and bearings to nearby 
trees were extracted from the laser data using a local min- 
ima detector. The vehicle was driven around the park for 
approximately 30 minutes, covering a distance of over 4 
km. Filter accuracy was calculated by comparing the esti- 
mated vehicle path with GPS. An example of a complete 
run of FastSLAM is shown in Figure 4. 

Figure 5(a) shows the estimated path of the vehicle 
based solely on odomehy. Even though this demonstrates 
that the vehicle’s odomehy is quite inaccurate, data asso- 
ciation is this data set is generally straightforward. The 
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accuracy of the laser sensor, and the widely spaced fea- 
tures rarely generate any kind of data association ambigu- 
ity. It comes as no surprise that the performance of Fast- 
SLAM and the EKF are comparable. Example path es- 
timates for the EKF and FastSLAM with low odometric 
noise are shown in Figures 5(b) and 5(c). 

The performance of the two algorithms was also com- 
pared after adding various amounts of noise to the observed 
controls. The results of this comparison are shown in Fig- 
ure 6. The increased motion noise had no measurable effect 
on the accuracy of FastSLAM. Additional motion noise 
caused the EKF to diverge, resulting in very high position 
error on average. In all experiments, FastSLAM was run 
with 100 particles. Example path estimates for the EKF 
and FastSLAM with high odomeuic noise are shown in 
Figures 5(d) and 5(e). In Figure 5(d), the EKF has clearly 
diverged. 

FastSLAM was also mn on the Victoria Park data set 
without any odometry estimates at all. This was accom- 
plished by adding velocity to the vehicle's state, and as- 
suming a overly conservative motion model. The vehicle's 
translational and rotational velocity were assumed to vary 
as a continuous random walk. Figure 7 shows the estimated 

EKFSLAM - 70 

- E 60 
FastSLAM ........... 

I - 

O L '  I 
0 0.05 0.1 0.15 0.2 

Error Added to Rotational Velocity (std.) 

Fig. 6. Accuracy of the vehicle path with varying levels of odornetq 
noise 

path of the vehicle. 
Not all of the features detected by the feature extractor 

belonged to static objects. Some features were generated 
by cars, and other moving objects. Features from mov- 
ing objects frequently resulted in spurious landmarks being 
added to the map. In general, it is difficult to measure the 
accuracy of the estimated map with this data set because 
there is no ground truth data available for the landmarks. 
However, incorporating negative information did result in 
44  percent fewer landmarks on average, and many fewer 
landmarks in dynamic areas (e.g. the street). 

VII. CONCLUSIONS 

We have presented an extension of the FastSLAM al- 
gorithm to the case of unknown data association. In ad- 
dition to sampling over robot paths, this formulation of 
FastSLAM also samples over potential data associations. 
The resulting algorithm consistently outperformed the Ex- 
tended Kalman Filter on a real world data set with vari- 
ous levels of odometric noise. In addition, we have shown 
how to incorporate negative information into FastSLAM. 
This technique is not specific to FastSLAM and can also 
be applied to other SLAM algorithms, including the EKE 
Use of negative evidence results in a measurable decrease 
in the number of false landmarks, especially if the feature 
detector being used generates a large number of spurious 
features. 

Fig. 1. Robot path estimated without dometry 
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ACKNOWLEDGMENTS VIII. APPENDIX: DERIVATION OF FACTORIZATION 

The SLAM posterior (4) can be rewritten as: 

p(st 1 z t , u t , n t ) p ( 8  1 .st,zt,ut:nt) (16) 
Thus, to derive the factored version (5) it suffices to show 
that: 

K 

p(8  I st,zt,ut;nt) = n p ( B ,  1 st )zt ,ut :nt)  (17) 
i=1 

This will be shown using induction. To do this we will 
need two intermediate results. The first is the probability 
of the landmark being observed On, given the robot path, 
the observations, and the controls. 

p(B,, I ,st: 2 ,  ut: n') (18) 

. 
Next we solve for the rightmost term. 
p(B,, 1 st-';zt-',iit-':nt-') 

p ( Z t  I St,Zt-',lkt,71t) 
P(&, 1 ~ ~ , z ~ , u ' , n ~ )  (19) - - 

P ( Z ,  I e,, , st, 71t) 

For our second intermediate result, we will compute the 
probability of any landmark that is not behig observed 
given the robot path, the observations, and the controls. 

p(&jnt I st; z', ut ,  n') 

(20) 
Markov = p(O+* 1 st-'; zt-1, ut-', nt-') 

We will assume the following induction hypothesis: 
p(O 1 st-', zt-1, ut-'; " P I )  

K 

i=1 

For the base case of K = 1 equation (17) is trivially true. 
In general, when K > 1: 
p(B 1 s t ;z t ,u t ,n t )  
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