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Abstract. In this paper, we demonstrate how an artificial neural
network (ANN) based controller can be evolved for a complex task
through hierarchical evolution and composition of behaviors. We
demonstrate the approach in a rescue task in which an e-puck robot
has to find and rescue a teammate. The robot starts in a room with
obstacles and the teammate is located in a double T-maze connected
to the room. We divide the rescue task into different sub-tasks: (i) exit
the room and enter the double T-maze, (ii) solve the maze to find the
teammate, and (iii) guide the teammate safely to the initial room. We
evolve controllers for each sub-task, and we combine the resulting
controllers in a bottom-up fashion through additional evolutionary
runs. We conduct evolution offline, in simulation, and we evaluate
the performance on real robotic hardware. The controller achieved a
task completion rate of more than 90% both in simulation and on real
robotic hardware.

1 Introduction

We study an approach to the hierarchical evolution of behavioral con-
trol for robots. Evolutionary robotics (ER) is a field in which evolu-
tionary computation is used to synthesize controllers and sometimes
the morphology of autonomous robots. ER techniques have the po-
tential to automate the design of behavioral control without the need
for manual and detailed specification of the desired behavior [6]. Ar-
tificial neural networks are often used as controllers in ER because
of their capacity to tolerate noise [12] such as that introduced by im-
perfections in sensors and actuators. Numerous studies have demon-
strated that it is possible to evolve robotic control systems capable of
solving tasks in surprisingly simple and elegant ways [20]. To date
relatively simple tasks have been solved using ER techniques, such
as obstacle avoidance, gait learning, phototaxis, and foraging [18];
but as Mouret and Doncieux write: “. . . this huge amount of work

hides many unsuccessful attempts to evolve complex behaviors by

only rewarding the performance of the global behavior. The boot-

strap problem is often viewed as the main cause of this difficulty, and

consequently as one of the main challenges of evolutionary robotics:

if the objective is so hard that all the individuals in the first genera-

tion perform equally poorly, evolution cannot start and no function-

ing controllers will be found.”. The bootstrapping problem is thus
one of the main reasons that there have been no reports of successful
evolution of control systems for complex tasks.

Several different incremental approaches have been studied as a
means to overcome the bootstrapping problem and to enable the evo-
lution of behaviors for complex tasks. In incremental evolution, the
initial random population starts in a simple version of the environ-
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ment to avoid bootstrapping issues. The complexity of the environ-
ment is then progressively increased as the population improves (see
for instance [8, 3]). Alternatively, the goal task can be decomposed
into a number of sub-tasks that are then learned in an incremental
manner (see for instance [10, 4, 3]). While a single ANN controller is
sometimes trained in each sub-task sequentially (such as in [3, 10]),
different modules can also be trained to solve different sub-tasks
(see [4] for an example). The approach presented in this paper falls
in the latter category: we recursively decompose the goal task into
sub-tasks and train different ANN-based controllers to solve the sub-
tasks. The controllers for the sub-tasks are then combined though an
additional evolutionary step into a single controller for the goal task.

We use a task in which a robot must rescue a teammate. Our res-
cue task requires several behaviors typically associated with ER [18]
such as exploration, obstacle avoidance, memory, delayed response,
and the capacity to navigate safely through corridors: (i) an e-puck
robot must first find its way out of a room with obstacles, (ii) the
robot must then solve a double T-maze [2, 5, 22] in which two light
flashes in the beginning of the maze instruct the robot on the location
of the teammate, and finally (iii) the robot must guide its teammate
safely to the room. We evolve behaviors in simulation and evaluate
their performance on a real robot. While there are several studies on
incremental evolution of behavioral control for autonomous robots,
the study presented in this paper is novel in three respects: (i) sub-
tasks are solved by one or more continuous time recurrent neural
networks that are evolved independently, (ii) we introduce the con-
cept of derived fitness functions during composition for sequential
tasks, and (iii) we demonstrate a fully evolved behavioral controller
solving a complex task on real robotic hardware.

The paper is organized as follows: in Section 2, we discuss related
work; in Section 3, we detail our proposed methodology; in Sec-
tion 4, we introduce the e-puck robot and our simulator; in Section 5,
we describe our experimental setup and analyze the results; and fi-
nally, in Section 6, we discuss the applicability and the limitations of
our approach.

2 Background and Related Work

Several approaches to incremental evolution of robotic controllers
have been proposed. The approaches fall into three different cate-
gories: (i) incremental evolution where controllers are evolved with
a fitness function that is gradually increased in complexity; (ii) goal
task decomposition in which a single ANN is trained sequentially on
different sub-tasks; (iii) goal task decomposition in which hierarchi-
cal controllers are composed of different sub-controllers evolved for
different sub-tasks along with one or more arbitrators that delegate
control.



A methodology belonging to the first category, namely in which
controllers are evolved with a fitness function that is gradually
increased in complexity, was proposed by Gomez and Miikku-
lainen [8]. They used a prey-capture task for their study. First, a sim-
ple behavior was evolved to solve a simplified version of the global
task, in the prey doesn’t move. Gradually, by repeatedly increasing
the prey’s speed, they evolved a more general and complex behav-
ior that was able to solve the prey-capture task. The controllers that
they obtained through the incremental approach were more efficient
and displayed a more general behavior than controllers evolved non-
incrementally. They also found that the incremental approach helped
to bootstrap evolution.

Harvey et al. [10] proposed an approach that falls in the second
category, namely where a single ANN is trained sequentially on dif-
ferent sub-tasks. The authors describe how they evolved a controller
to robustly perform simple visually guided tasks. They incrementally
evolved the controller starting with a “Big Target”, then a “Small Tar-
get”, and finally to a “Moving Target”. The controller was evolved in
few generations and it performed well on real robotic hardware.

Christensen and Dorigo [3] compared two different incremental
evolutionary approaches, to evolve a controller for a swarm of con-
nected robots that had to perform phototaxis while avoiding holes.
They found no benefits in using neither an incremental approach
where the controllers were trained on different sub-tasks sequentially
nor an incremental increase in environmental complexity over a non-
incremental approach for their highly integrated task.

There are several examples of studies on incremental evolution
that fall in the third category, namely in which the global controller
is composed of different sub-controllers that have been trained on
different sub-tasks. Moioli et al. used a homeostatic-inspired GasNet
to control a robot [16]. They used two different sub-controllers, one
for obstacle avoidance and one for phototaxis, that were inhibited or
activated by the production and secretion of virtual hormones. The
authors evolved a controller that was able to select the appropriate
sub-controller depending on internal stimulus and external stimulus.

Nolfi introduced the emergent modular architecture in the early
1990s [19]. In his approach, the designer of the experiment has min-
imal impact on the architecture of the network. Evolution is allowed
to explore the modular properties of the selected ANN: each actua-
tor corresponds to multiple output neurons that compete for activa-
tion. Controllers were evolved for a garbage collection task and were
tested successfully on a real Khepera robot. Soltoggio et al. used
plastic networks with neuromodulation in a double T-maze task [22].
Although their controllers were able to solve the task correctly, the
robot and environmental model used in their study was very simpli-
fied: the inputs of the network consisted of high-level information of
the environment (“at turn”, “at starting position”, “at destination”)
and the movement of the robot consisted of discrete steps through
the maze. Furthermore, their controllers were not transferred to real
robotic hardware.

Lee [14] proposed an approach in which different sub-behaviors
were evolved for different sub-tasks and then combined hierarchi-
cally through genetic programming. The approach was studied in a
task where a robot had to search for a box in an arena and then push it
towards a light source. By evolving different reactive sub-behaviors
such as “circle box”, “push box” and “explore”, the authors managed
to synthesize a robotic controller that solved the task. The author
claims that his controllers were transferable to a real robot, but only
some of the sub-controllers were tested on real hardware. Larsen et
al. [13] extended Lee’s work by using reactive neural networks for
the sub-controllers and the arbitrators instead of evolved programs.

However, the chosen goal task used by both Lee and Larsen is rela-
tive simple and the scalability of their respective approaches to more
complex tasks was never tested.

Our approach shares many similarities with Lee’s [14] and Larsen
et al.’s [13] approaches in that controllers are evolved and composed
hierarchically based on task decomposition. However, as we demon-
strate in this study, our approach scales to complex tasks because
(i) we use non-reactive controllers, and (ii) during the composition
of sub-controllers into larger and more complex controllers, the fit-
ness function for the composed task can be derived directly from the
decomposition. We also demonstrate transfer of behavioral control
from simulation to real robotic hardware without a significant loss
of performance (we cross the reality gap [11]), and we discuss the
benefits of transferring controllers incrementally.

3 Methodology

The main purpose of the proposed methodology is to allow for the
synthesis of behavioral control for complex tasks using an evolution-
ary approach. The controller has a hierarchical architecture and it is
composed of several ANNs (see Figure 1). Each network is either a
behavior arbitrator or a behavior primitive. These terms were used
in [14] to denote similar controller components. A behavior primi-
tive network is usually at the bottom of the controller hierarchy and
directly controls the actuators of the robot, such as the wheels. If it is
relatively easy to find an appropriate fitness function for a given task,
a behavior primitive (a single ANN) is evolved to solve the task. An
appropriate fitness function is one that (i) allows evolution to boot-
strap and to achieve good performance, (ii) evolves a controller that
is able to solve the task consistently and efficiently, and (iii) evolves
a controller that transfers well to real robotic hardware. In case an
appropriate fitness function cannot be found for a task, the task is
recursively divided into sub-tasks until appropriate fitness functions
have been found for each sub-task.
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Figure 1. A representation of the hierarchical controller. A behavior
arbitrator network delegates the control of the robot to one or more of its
sub-controllers. A behavior primitive network can control the actuators of

the robots directly.

Controllers evolved for sub-tasks are combined through the evo-
lution of a behavior arbitrator. A behavior arbitrator receives either
all or a subset of the robot’s sensory inputs, and it is responsible for
delegating control to one or more of its sub-controllers. Each be-
havior arbitrator can have a different sub-controller activator. The
sub-controller activator activates one or more sub-controllers based



on the outputs of the ANN in the behavior arbitrator. The behavior
arbitrators used in this study have one output neuron for each of its
immediate sub-controllers. The sub-controller activator we use acti-
vates the sub-controller for which the corresponding output neuron of
the arbitrator has the highest activation. The state of a sub-controller
is reset when it stops being activated. Alternative sub-controller ac-
tivators could be used, such as activators that allow for multiple sub-
controllers to be activated in parallel. Parallel activation of different
sub-controllers could, for instance, allow a robot to communicate at
the same time as it executes motor behaviors.

If the fitness function for the evolution of a behavior arbitrator is
difficult to define, it can be derived based on the task decomposi-
tion. The derived fitness function is constructed to reward the arbi-
trator for activating a sub-controller that is suitable for the current
sub-task, rather than for solving the global task. The use of derived
fitness functions in the composition step circumvents the otherwise
increase in fitness function complexity as the tasks considered be-
come increasingly complex.

The topology of each network in the hierarchy (such as the number
of input neurons, the number of hidden neurons, and the number out-
put neurons) is completely independent from one another. The basic
behavior primitives are evolved first. The behavior primitive are then
combined though the evolution of a behavior arbitrator. The resulting
controller can then be combined with other controllers through addi-
tional evolutionary steps to create a hierarchy of increasingly more
complex behavioral control. Each time a new sub-controller (either
a behavior primitive or a composed controller) has been evolved, its
performance on real robotic hardware can be evaluated. The exper-
imenter can thus address issues related transferability incrementally
as the control system is being synthesized.

4 Robot and Simulator

We used an e-puck [17] robot for our experiments. The e-puck is a
small circular (diameter of 75 mm) differential drive mobile robotic
platform designed for educational use (see Figure 2). The e-puck’s
set of actuators is composed of two wheels, that enable the robot
to move at speeds of up to 13 cm/s, a loudspeaker, and a ring of
8 LEDs which can be switched on/off individually. The e-puck is
equipped with several sensors: (i) 8 infrared proximity sensors which
are able to detect nearby obstacles and changes in light conditions,
(ii) 3 microphones (one positioned on each side of the robot, and one
towards the front), (iii) a color camera, and (iv) a 3D accelerometer.
Additionally, our e-puck robots are equipped with a range & bearing
board [9] which allows them to communicate with one another.

We use JBotEvolver for offline evolution of behavioral control.
JBotEvolver is an open source, multirobot simulation platform, and
neuroevolution framework. The simulator is written in Java and im-
plements 2D differential drive kinematics. Evaluations of controllers
can be distributed across multiple computers and different evolu-
tionary runs can be conducted in parallel. The simulator can be
downloaded from: http://sourceforge.net/projects/
jbotevolver.

We use four of the e-puck’s eight infrared proximity sensors: the
two front sensors and the two lateral sensors. We collected samples
(as advocated in [15]) from the sensors on a real e-puck robot in
order to model them in JBotEvolver. Each sensor was sampled for
10 seconds (at a rate of 10 samples/second) at distances to the maze
wall ranging from 0 cm to 12 cm. We collected samples at increments
of 0.5 cm for distances between 0 cm and 2 cm, and at increments
of 1 cm for distances between 2 cm and 12 cm. Distance-dependent

noise was added to the sensor readings in simulation corresponding
to the amount of noise measured during the sampling of the sensors.
We furthermore added a 5% offset noise to the sensor’s value. The
e-puck’s infrared proximity sensors can also measure the level of
ambient light. In this study, we use ambient light readings from the
two lateral proximity sensors to detect light flashes in the double T-
maze sub-task. When a light flash is detected, the activation of one
of the two dedicated neurons is set to 1 depending on the side from
which the light flash is detected. The input neuron stays active with
a value of 1 for 15 simulation cycles (equivalent to 1.5 seconds) to
indicate that a flash has been detected. We also included a boolean
“near robot” sensor that lets the robot know if there is any other robot
within 15 cm. For this sensor, we use readings from the range &
bearing board. In simulation, we added Gaussian noise (5%) to the
wheel speeds in each control cycle.

If the control code does not fit within the e-puck’s limited mem-
ory (8 kB), it is necessary to run the control code off-board. When
the control code is executed off-board, the e-puck starts each con-
trol cycle by transmitting its sensory readings to a workstation via
Bluetooth. The workstation then executes the controller, and sends
back the output of the controller (wheel speeds) to the robot. We
use off-board execution of control code in the real robot experiments
conducted in this study.

Figure 2. The e-puck is a differential drive robot with a diameter of 75 mm
and is equipped with a variety of sensors and actuators, such as a color

camera, infrared proximity sensors, a loudspeaker, 3 microphones, and two
wheels. Our e-pucks are also equipped with a range & bearing board that

allows for inter-robot communication.

5 Experiments and Results
In our experiments, a robot must rescue a teammate that is located in
a particular branch of a maze. The robot must find the teammate and
guide it to safety. The environment is composed of a room, in which
the robot starts, and a double T-maze. A number of obstacles are
located in the room. The room has a single exit that leads to the start
of a double T-maze (see Figure 3). In order to find its teammate, the
robot should exit the room and navigate to the correct branch of the
maze. Two rows of flashing lights in the main corridor of the maze
give the robot information regarding the location of the teammate.
Upon navigating to the correct branch of the maze, the robot must
guide its teammate back to the room.

The rescue task is relatively complex, especially given the limited
amount of sensory information available to the robot, and it would be
difficult to find an appropriate fitness function that allows evolution
to bootstrap. We therefore divided the task into three sub-tasks: (i)
exit the room, (ii) solve T-maze to find teammate, and (iii) return to



the room with the teammate. Below, we detail how we evolved the
controllers to solve the individual sub-tasks, and how we combined
them to obtain a controller for the complete rescue task.

Second
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Figure 3. The environment is composed of a room with obstacles and a
double T-maze. The room is rectangular and its size can vary between 1 m
and 1.2 m. The double T-maze has a total size of 2 m ⇥ 2 m. The two rows

with the lights are located in the central maze corridor. The activation of
these two rows of lights indicate the location of a teammate.

5.1 Controller Architecture
The structure of the controller for the complete rescue task can be
seen in Figure 4. We recursively divided the task into sub-tasks until
an appropriate fitness function could be found, and we then evolved
the sub-controllers in a bottom-up fashion, starting with the behavior
primitives.

For each evolutionary run, we used a simple generational evolu-
tionary algorithm with a population size of 100 genomes. The fitness
score of each genome was averaged over samples 50 with varying ini-
tial conditions, such as the robot’s starting position and orientation.
After the fitness of all genomes had been sampled, the 5 highest scor-
ing individuals were copied to the next generation. 19 copies of each
genome were made and each gene was mutated with a probability of
10% by applying a Gaussian offset. All the ANNs in the behavior
primitives and in the behavior arbitrators were time-continuous re-
current neural networks [1] with one hidden layer of fully-connected
neurons.

5.1.1 Exit Room Sub-task

The first part of the rescue task was an exploration and obstacle
avoidance task in which the robot must find a narrow exit leading to
the maze. The room was rectangular with a size that varied between
1 m and 1.2 m. We placed either 2 or 3 obstacles in the room de-
pending on its size. Each obstacle was rectangular with side lengths
ranging from 5 cm to 20 cm selected at random. The location of the
room exit was also randomized in each trial.

We found that an ANN with 4 input neurons, 10 hidden neurons,
and 2 output neurons could solve the task. Each of the input neurons
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Behavior Primitive Behavior Primitive
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Behavior Arbitrator

Main

Behavior Arbitrator
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Figure 4. The controller used in our experiments is composed of 3
behavior arbitrators and 4 behavior primitives.

was connected to an infrared proximity sensor, and the output neu-
rons controlled the speed of the robot’s wheels. In order to evolve the
controller, the robot was randomly oriented and positioned near the
center of the room at the beginning of each sample.

Each controller was evaluated according to one of two possible
outcomes: (a) the robot managed to exit the room, and it was assigned
a fitness according to f1,a, or (b) the robot did not manage to find the
exit to the room within the allotted time (100 seconds), and it was
assigned a fitness according to f1,b. Fitness f1,a and f1,b are defined
by:

f1,a = 5 +
maxCycles� spentCycles

maxCycles

(1)

f1,b =
distanceToExit� closestDistanceToExit

distanceToExit

(2)

where distanceToExit is the distance from the center of the room
to its exit, and closestDistanceToExit is the closest point to the
exit that the robot navigated to.

The “exit room” controllers were evolved until the 500th genera-
tion and each sample was evaluated for 1000 control cycles, in a total
of 10 evolutionary runs. The controllers achieved an average solve
rate of 52%, with a solve rate of 96% in the best evolutionary run.
The best performing controller starts by moving away from the cen-
ter of the room until it senses a wall, which it then follows clockwise
until the room exit is found. 3 of the 10 evolutionary runs produced
controllers capable of finding the exit of the room in over 90% of the
samples. The remaining runs did not produce successful behaviors:
the robots would spin/circle around, sometimes finding the exit by
chance and often crashing into one of the surrounding walls or into
an obstacle.

5.1.2 Solve Double T-maze Sub-task

In the second sub-task, the robot had to solve a double T-maze in
order to find the teammate that had to be rescued. The robot was
evaluated according to one of three possible different outcomes: (i) if
the robot successfully navigated to its goal, it was assigned a fitness
based on f2,a, (ii) if the robot navigated to an incorrect branch or if it
collided into a wall, it was assigned a fitness based on f2,b, and (iii)
if the time expired, the robot was assigned a fitness of 0. f2,a and
f2,b are defined by:



f2,a = 1 +
maxCycles� spentCycles

maxCycles

(3)

f2,b =
totalDistance� currentDistanceToDest

3 · totalDistance

(4)

where totalDistance is the distance from the start of the maze to
the teammate, and currentDistanceToDest is the final distance
from the main robot to its destination.

We experimented with using a single ANN to solve this sub-task.
The ANN was composed of 6 input neurons, 10 hidden neurons, and
2 output neurons. The input neurons were connected to the 4 prox-
imity sensors and the 2 light sensors. The output neurons directly
controlled the speed of the wheels.

We conducted 10 evolutionary runs, each lasting 1000 genera-
tions. The controllers were post-evaluated and the fitness of every
controller was sampled 100 times for each of the 4 possible light
configurations. The evolved controllers had an average solve rate of
only 40%. The best controller had a solve rate of 83%, with just 3
other controllers were able to correctly solve the T-maze in more than
50% of the samples.

Since we could not obtain controllers that could solve the task
consistently, we followed our methodology and further divided the
solve maze sub-task into three different sub-tasks: “follow wall”,
“turn left” and “turn right”, for which appropriate fitness functions
could easily be specified. The behavior primitive network for each
of these three sub-tasks had 4 input neurons, 3 hidden neurons, and
2 output neurons. The input neurons were connected to the infrared
proximity sensors and the outputs controlled the speed of the wheels.
The three behavior primitives were evolved in corridors of different
lengths. The environment for the “turn” controllers was also com-
posed of either left or right turns, depending on the controller.

A total of 5 evolutionary runs were simulated for each of the basic
behaviors (“follow wall”, “turn left” and “turn right”). The evolu-
tionary process lasted 100 generations, and the best controller from
each evolutionary run was then sampled 100 times in order to eval-
uate the controller’s solve rate. The “turn left” controllers achieved
an average solve rate of 89%, with a solve rate of 100% for the con-
troller that obtained the highest fitness; the “turn right” controllers
achieved an average solve rate of 69%, with a solve rate of 100%
for the controller that obtained the highest fitness; and the “follow
wall” controllers achieved an average solve rate of 99%, with a solve
rate of 100% for the controller that obtained the highest fitness. The
controllers for the basic behaviors achieved a good performance in
relatively few generations and the majority of the evolutionary runs
converged to the optimal solve rate, with an occasional run getting
stuck in a local optimum.

We then evolved a behavior arbitrator with the three best behavior
primitives as sub-controllers. The behavior arbitrator network had 6
inputs, 10 hidden, and 3 output neurons. The inputs were connected
to the 4 infrared proximity sensors and the 2 light sensors. At the be-
ginning of each trial, the robot was placed at the start of the double
T-maze and had to navigate to the correct branch based on the activa-
tions of the lights that were placed on the first corridor (see Figure 3).
For instance, if the left light of the first row and the right light of the
second row were activated, the robot should turn left at the first junc-
tion and right at the second junction. The fitness awarded was either:
(i) f2,a, if the robot successfully navigated to its teammate’s location,
(ii) f2,b if the robot navigated to an incorrect branch of the maze or
collided into a wall, or (iii) a fitness of 0 if the time expired before
the robot managed to enter a branch of the maze. The sample was ter-

minated if the robot collided into a wall or if it navigated to a wrong
branch of the maze.

The evolution process lasted until the 1000th generation, in a total
of 10 evolutionary runs. The controllers achieved an average solve
rate of 93%, with a solve rate of 99.5% for the highest performing
controller.

To test the controller on real robotic hardware, we built a dou-
ble T-maze with a size of 2 m ⇥ 2 m (see Figure 3). In the real
maze, the flashing lights were controlled by a Lego Mindstorms NXT
brick. The brick was connected to four ultrasonic sensors that de-
tected when the robot passed by. Lights were turned on by the 1st
and 3rd ultrasonic sensor and turned off by the 2nd and 4th ultra-
sonic sensor. The brick controlled the state of the lights using two
motors.

5.1.3 Return to Room Sub-task

The final sub-task consisted of the robot guiding its teammate back
to the first room. For this sub-task, we reused the behavior primi-
tives previously evolved for maze navigation (“follow wall”, “turn
left” and “turn right”) and we evolved a new behavior arbitrator. The
behavior arbitrator network was trained in the double T-maze with
the robot starting in one of the four branches of the maze (chosen at
random in the beginning of each trial). The behavior arbitrator had 4
input neurons, 10 hidden neurons, and 3 output neurons. The input
neurons were connected to the robot’s infrared proximity sensors and
the output neurons selected which sub-controller should be active.

The teammate being rescued was preprogrammed to follow the
main robot once it was within 15 cm. We used the e-puck range &
bearing extension board to determine the distance between the two
robots. Since this was a task in which the robot had to navigate cor-
rectly through the maze, we used the same fitness function as in the
solve double T-maze sub-task described in the previous section. The
only difference was the objective: the robot was evaluated based on
its distance to the entrance of the maze, not the distance to the team-
mate.

We conducted a total of 10 evolutionary runs until the 500th gen-
eration for the “return to room” behavior. The controllers achieved an
average solve rate of 75%, with a solve rate of 100% for the highest
performing controller.

5.2 Evolving the main controller

For the composed task, we evolved a behavior arbitrator with the
controllers for the exit room, the solve maze, and the return to room
tasks as sub-controllers. The robot had to first find the entrance to the
double T-maze, then navigate the maze in order to find its teammate,
and finally guide the teammate safely back to the room. The behavior
arbitrator for the complete rescue task had 5 input neurons, 10 hidden
neurons, and 3 output neurons. The inputs were connected to the
4 infrared proximity sensors and to a boolean “near robot” sensor,
which indicated if there was a teammate within 15 cm (based on
readings from the range & bearing board).

We evolved the controller with a derived fitness function that re-
wards the selection of the right behaviors for the current sub-task.
The controller was awarded a fitness value between 0 and 1 for each
sub-task (for a maximum of 3 for all sub-tasks), depending on the
amount of time that it selected the correct behavior. The fitness func-
tion is a sum of the equation f3 for each of the 3 sub-tasks. f3 is
defined as follows:



f3 =
correctBehaviorCycles

totalBehaviorCycles

(5)

where totalBehaviorCycles is the number of simulation cy-
cles that the controller has spent in a particular sub-task, and
correctBehaviorCycles is the number of cycles in which the con-
troller chose the sub-controller for that particular sub-task.

We ran 10 evolutionary runs until the 1000th generation for the
composed task controller. The fitness of each genome was sampled
20 times and the average fitness was computed. Each sample lasted a
maximum of 2000 control cycles (equivalent to 200 seconds). The 10
resulting controller achieved an average solve rate for the composed
task of 85%, with a solve rate of 93% for the highest performing
controller.

We analyzed how the main controller managed to solve each part
of the composed task. On the “exit room” task, all 10 controllers
averaged a solve rate of 91%. This means that all the controllers
successfully learned that they should activate the exit room behav-
ior primitive in the first part of the composed task.

After exiting the room, the controller should activate the “solve
maze” behavior in order to find the robot’s teammate. An important
detail is that once the controller selects this behavior, it should not
switch to another one until it reaches the end of the maze: switching
resets the state of the selected sub-controller, meaning that the “solve
maze” behavior arbitrator would forget which light flashes previously
sensed. The average solve rate dropped from 91% to 88%, which
means that only 3% of all the samples failed at solving the maze
sub-task.

Upon finding the teammate, the robot should return to the starting
point, completing the composed task. Ideally, this should be done by
activating the return behavior at the end of the maze. The 10 con-
trollers achieved an average solve rate of 85%.

5.3 Transfer to the real robot

After evaluating all the different evolutionary runs, the best perform-
ing controller from the simulation was tested on a real e-puck. The
robot had to solve the composed task: find the exit of the initial room,
navigate the double T-maze to the correct branch, and return to the
room. We used a room with a size of 120 cm ⇥ 100 cm for our
real robot experiments. Three identical obstacles with side lengths of
17.5 cm and 11 cm were placed in the room as shown in Figure 3. We
sampled the controllers 6 times for each light combination, for a total
of 24 samples. Since the purpose of these experiments was to test the
transferability of the evolved controller, the teammate was not used
and the near-robot sensor was remotely triggered if the robot reached
the correct maze branch.

The controller solved the composed task on the real robot in 22 out
of 24 samples (a solve rate of 92%). It consistently chose the correct
sub-network at each point of the task, and only failed in the return to
room behavior twice.

We ran additional proof-of-concept experiments in which we in-
clude a teammate that was preprogrammed to follow the main robot
back to the initial room. Videos of these experiments can be found in
http://home.iscte-iul.pt/

˜

alcen/erlars2012/.

6 Conclusions

In this study, we demonstrated how controllers can be composed in a
hierarchical fashion to allow for the evolution of behavioral control
for a complex task. We started by decomposing the goal task into

sub-tasks until a controller for each sub-task could easily be evolved.
When we combined the sub-controllers, we used a derived fitness
function that rewarded controllers for activating the sub-controller
corresponding to the current sub-task rather than for solving the
global task. We evaluated the evolved behavior on a real e-puck per-
forming a rescue task. The real robot managed to solve the task in
22 out of 24 experiments (solve rate of 92%), which is similar to the
robot’s performance in simulation (solve rate of 93% in 400 experi-
ments).

Our approach overcomes a number of fundamental issues in evo-
lutionary robots. Often the experimenter has to go through a tedious
trial and error process in order to design a suitable fitness function
for the task at hand. In our approach, we recursively divide tasks
into sub-tasks until a simple fitness function can easily be specified.
We tried to evolve a single ANN-based controller for the solve maze
sub-task, for instance, but since bootstrapping proved difficult, we
divided the solve maze task into sub-tasks (follow wall, turn left, and
turn right). For each of these simple tasks, fitness functions that al-
lowed evolution to bootstrap were straightforward to specify.

Although more complex evolutionary algorithms, such as novelty
search [21], might allow evolution to find solutions for more complex
tasks, they would have their limitations. In our study, we show that,
by following a divide and conquer approach, we can evolve control
for a complex task using a very simple evolutionary algorithm which
cannot evolve control for the complete task. For a more advanced
algorithm, the divisions may be more coarse, but we could apply the
same principles.

During the composition of sub-behaviors, we use a fitness function
directly derived from the immediate decomposition, that is, a fitness
function that rewards a controller for activating an appropriate sub-
controller given the current situational context: after we had obtained
controllers for each of the three sub-tasks, exit room, solve maze, and
return to room, we combined them in an additional evolutionary step.
During evolution, an arbitrator (an ANN) was rewarded for (i) acti-
vating the exit room sub-controller while the robot was in the room,
(ii) the solve sub-controllers while the robot was in the maze, and
(iii) the return to room behavior after the teammate had been located.
In this way, we avoid that the complexity of the fitness function in-
creases with the task complexity as sub-behaviors are combined.

The transfer of behavioral control from simulation to a real robot
is usually a hit or miss because a controller for the goal task is com-
pletely evolved in simulation before it is tested on real hardware. In
our approach, the transfer from simulation to real robotic hardware
can be conducted in an incremental manner as behavior primitives
and sub-controllers are evolved. This allows the designer to address
issues related to transferability immediately and locally in the con-
troller hierarchy.

The applicability of our approach depends on if the task for which
a controller is sought can be broken down into reasonably indepen-
dent sub-tasks. For highly integrated tasks where it is unclear if or
how the goal task can be divided into sub-tasks [3], our approach may
not be directly applicable. However, in cases where a controller for an
indivisible sub-task cannot be evolved, either because a good fitness
function cannot be found or because evolved solutions do not trans-
fer well, the evolved control may be combined with preprogrammed
behaviors [5].

The potential cost of an engineered approach, such as the approach
proposed in this paper, is that evolution is constrained. Surprisingly
simple and elegant solutions that the experimenter did not foresee
may therefore never be discovered. Some researchers advocate the
use of implicit, behavioral, and internal fitness functions [7], because



fitness functions with such characteristics, in theory, allow for solu-
tions to emerge through an autonomous self-organization process. In
practice, however, such fitness functions, which are supposed to be
redeemed from any constraints imposed by a priori knowledge, are
often the result of a series of unsuccessful experiments. After each
unsuccessful experiment, the fitness function is modified based on
the results of the experiment and based on the experiment’s guess
concerning what may be “wrong”. As a result, the fitness function
used in the final successful experiment often contains factors and
values, and sometime even entire terms that seem arbitrary.

We do not dismiss the potential benefits of implicit, behavioral,
and internal fitness functions in our approach. Instead, we suggest
to divide the task into two or more sub-tasks, when such a fitness
function cannot easily be found. In this way, controllers for complex
tasks can be synthesized in a hierarchical fashion, while at the same
time, they can benefit from evolutionary robotics techniques, namely
(i) automatically synthesis of control, and (ii) evolution’s ability to
exploit the way in which the world is perceived through the robot’s
(often limited) sensors. Our long-term goal is to combine the bene-
fits of manual design of behavioral control with the benefits of auto-
matic synthesis though evolutionary computation to obtain capable,
efficient, and robust controllers for real robots.
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