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a b s t r a c t

There is evidence that animals utilize local anomalities of Earth’s magnetic field not just for orientation
detection but also for true navigation, i.e., some animals are not only able to detect the direction of Earth’s
magnetic field (compass heading), they are able to derive positional information from local cues arising
from the local anomalities of Earth’s magnetic field. Similarly to Earth’s non-constant magnetic field, the
magnetic field inside buildings canbehighly non-uniform. Themagnetic field fluctuations inside buildings
arise from both natural and man-made sources, such as steel and reinforced concrete structures, electric
power systems, electric and electronic appliances, and industrial devices. Assuming that the anomalities
of the magnetic field inside a building are nearly static and they have sufficient local variability, the
anomalies provide a unique magnetic fingerprint that can be utilized in global self-localization. Based
on the evidence presented in this article it can be argued that this hypothesis is valid. In this article, a
Monte Carlo Localization (MCL) technique based on the above hypothesis is proposed. The feasibility of
the technique is demonstrated by presenting a series of global self-localization experiments conducted in
four arbitrarily selected buildings, including a hospital. The experiment setup consists of a mobile robot
instrumented with a 3-axis magnetometer and a computer. In addition to global robot self-localization
experiments, successful person self-localization experiments were also conducted by using a wireless,
wearable magnetometer. The reported experiments suggest that the ambient magnetic field may remain
sufficiently stable for longer periods of time giving support for self-localization techniques utilizing the
local deviations of the magnetic field.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Evidence suggests that animals utilize Earth’s magnetic field for
navigation [1–5] and for orientation detection [6]. Some animals,
such as spiny lobsters, are not only able to detect the direction
of Earth’s magnetic field, they can even sense their true position
relative to their destination [1]. This means that these particu-
lar animals are able to derive positional information from local
cues that arise from the local anomalies of Earth’s magnetic field.
The exact degree of magnetic sensitivity of lobsters is not known.
However, the theoretical considerations seem to suggest that bio-
logical receptors can achieve the sensitivity required to use mag-
netic maps over distances as small as 10 km [7]. It has been argued
that magnetic field sensitivity in living organisms is the result of
a highly evolved, finely-tuned sensory system based on single do-
main, ferromagnetic crystals [8]. In [8], the authors also suggest
that magneto reception could have been one of the first sensory
systems that has been evolved. In this article, we propose an ap-
proach for global self-localization,which draws its inspiration from
the nature and this intriguing ability of some animals to utilize the
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small deviations of Earth’s magnetic field for true navigation. As an
analog to the non-uniformmagnetic field of the Earth, many build-
ings seems to have their own, distinguishable magnetic field with
small local anomalities, as is illustrated in Fig. 10. By utilizing prob-
abilistic techniques, such as MCL [9,10], these magnetic fields can
provide a medium for indoor navigation.
Static and extremely low-frequency (ELF) magnetic fields in

modern buildings arise from both natural and man-made sources,
such as electric power systems, electric and electronic appliances,
and industrial devices [11,12]. Steel and reinforced concrete struc-
tures of buildings cause fluctuations in the ambient magnetic
field [13,14]. Static and ELF fields are mainly considered to be
harmful, as they can cause electromagnetic interferences to sensi-
tive electrical devices such as video display units and sophisticated
measurement instruments. The health impacts of magnetic fields
on people have also been studied [12], and solutions for eliminat-
ing the interference problems that magnetic fields cause in elec-
tronic devices and for alleviating concerns about possible health
impacts have been proposed [11].
In this article the local anomalities of the ambient magnetic

field are utilized in global indoor self-localization. It is argued here
that each building has its own unique ambient magnetic field. If
the anomalies of the magnetic field have sufficient variability, it is
possible to utilize the field in the problem domain of mobile robot
localization.

http://www.elsevier.com/locate/robot
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Fig. 1. The measurement setup used in global robot self-localization experiments.
Sensor readings are transmitted to PC for storing through RS-232 connection.

Earth’smagnetic field has been extensively utilized in detecting
the heading of a robot by using an electric compass. Approaches
to overcome the problems caused by magnetic field fluctuations
to systems based on the electric compass have also been pro-
posed [15]. Consequently, magnetic anomalities have been consid-
ered as an undesired property of the environment, when it comes
to navigation. Only one previous study [16] was found where the
ambient magnetic field has been utilized for localization. The au-
thors of [16] used deviations of compass headings to provide dis-
tinctive location signatures for place recognition. However, in this
article the local properties of the magnetic field are used as obser-
vations providing a spatially changing physical quantity, assuming
a non-uniformmagnetic field. In this article, MCL technique [9,10]
was used to estimate the position of the robot, knowing the ob-
servations of the magnetic field and the approximate dynamics of
the robot or a moving target (e.g. a person) in general. In this arti-
cle, global self-localization was considered in one dimension only,
i.e., only the position of the target within the corridors was esti-
mated. One-dimensional localization alone is useful in many ap-
plications, such as in office delivery applications. This is especially
true in buildings where long corridors have been used to connect
various parts, such as rooms, of the building.
The proposed approach is analogous to terrain navigation tech-

niques, which have been used, e.g., in autonomous underwater ve-
hicles (AUV) [17–19]. The authors of [18] have proposed a concept
of a magnetic terrain navigation system for submersibles, which
utilizes the non-uniformity of Earth’s magnetic field for underwa-
ter navigation.
This article is organized as follows. The experimental setup is

described in Section 2.1. Section 2.2 briefly outlines the MCL tech-
nique. In Section 3 the calibration of the measurement system
for compensating possible sensor inclination errors is briefly ad-
dressed. Section 4 presents the achieved results and the conclusion
is given in Section 5.

2. Experiments

2.1. Setup

The framework of all buildings, used as experiment environ-
ments, are been made from reinforced concrete and steel. A floor
plan example of one experiment environment is shown in Fig. 3,
which presents the Computer Engineering laboratory (CL). Photos
of interiors of all four experiment environments are shown in Fig. 4.
The floor plan of Computer Engineering Laboratory shows the
278 m long measurement path through the main corridors of the
Fig. 2. Themeasurement setup used in global person self-localization experiments.
2.4 GHz radio link is used to send sensor readings to a base station, which stores the
data.

laboratory. The path is marked with arrows in Fig. 3, starting from
the 0 position and ending at the 278 position. The goal of each
global self-localization experiment was to estimate the position
of the localization target along the path through the environment
while the robot or personwas following approximately the center-
line of the corridor. In each experiment the target (robot or person)
started from an unknown initial position between [0, xmax]. The
fact that the localized target was following the centerline of the
corridor made the localization problem one dimensional, i.e., only
the position of the localization target along the pathwas estimated.
The measurement setup for global robot self-localization experi-
ments is presented in Fig. 1. The robot used was iRobot’s Create
mobile robot, whichwas instrumentedwith a PNIMicroMag 3-axis
magnetometer mounted at the end of a 0.4 m long aluminum rod
in order to keep the magnetometer away from the magnetic field
produced by the coils of the wheel motors. The magnetic field B
wasmeasured every 200ms (5 Hz) producing a three-dimensional
vector m =

[
mxmymz

]
consisting of the three components, in

units of µT , of the magnetic flux density in x, y, and z directions,
respectively (see Fig. 1).
Two alternative ways of utilizing the measurement m as an

observation for the localization method were considered here:
(1) using the norm ‖m‖ as the observation z from B, and
(2) using m directly as the observation z . ‖m‖ is a rotation
invariant scalar quantity assuming the magnetic sensor has been
properly calibrated, i.e., ‖m‖ provides information only about the
magnitude of themagnetic field. The use of ‖m‖ as the observation
is justified when the angular motion of the sensor cannot be
estimated nor controlled but the linear motion of the sensor can
be estimated. When both linear and angular motion of the sensor
can be estimated the best localization performance can be achieved
by using m directly as the observation from the magnetic vector
field B.
The measurement setup for person self-localization experi-

ments is presented in Fig. 2. The 3-axis magnetometer was located
on person’s chest from which the data is being sent to the con-
trol unit, which sends the data wirelessly to a base station for stor-
ing.Magneticmaps of paths through the experiment environments
were provided prior to the localization experiments. Each map
used in robot self-localization experiments was created by driving
the robot under manual control along the path while keeping the
robot approximately at the centerline of the corridor. The speed of
the robot was 0.2m/s and themagnetic field wasmeasured at 5 Hz
together with the position estimate, i.e., the distance traveled by
the robot from the origin (see Fig. 3). The final map was created by
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Fig. 3. Floor map of Computer Engineering Laboratory. The 0 position (label 0) and
the end position (label 278) are markedwith a square and a circle, respectively. The
measurement path through the corridor is shown with arrows. The goal of global
self-localization experiments is to estimate the position of the localization target
(robot or person) that starts from an unknown position xstart between [0 m, 278 m]
and goes along the path to selected, arbitrary direction. Two-dimensional map (see
Fig. 10) for the first 70 m of the path is shown on the right.

applying a linear interpolation to data using a 0.04m step size. The
magnetic maps for the four experiment environments are shown
in Fig. 5 showing ‖m‖ as a function of the position together with
observation data which were acquired after the map data. In all
experiments, map data was used as the ground truth, i.e., possible
odometric errors were not considered even though the errors in-
troduce position deviations with respect to the real environment.
In this article only the basic localization technique is considered —
issues considering the accuracy of the map are not addressed here.
In person self-localization experiments odometric data (con-

trol) was not available. The preliminary global person localization
experiments were conducted by taking magnetic field measure-
ments while the person was walking approximately with constant
speed (roughly 0.5 m/s). Deviations in walking speed caused some
bias to the estimation error due to discrepancies betweenmap and
observation data. Despite this, the localization estimate converged
near the true position. The future workwill address the issue of es-
timating person’s dynamics by utilizing inertial sensors in order to
estimate the control applied to person’s state.
In addition to the map data, observation data sets were

acquired and used as observation (measurement) data in the
reported experiments. After acquiring the observation data sets,
the localization experiments were conducted off-line in Matlab
environment using a simulated localization target, i.e., a robot or
a person. The localization target is using the collected observation
data, i.e., the function hobs(x), to generate an observation z for
state x. The observation data (‖m‖ as a function of position x) are
presented in Fig. 5 togetherwith themap data. The legends in Fig. 5
show when the corresponding observation data was acquired, i.e.,
t defines how many days have elapsed from the creation of the
map.
a
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Fig. 4. Photos of the interiors of buildings where localization experiments were
conducted (rows 1–4, path lengths in parentheses): (1) Computer Engineering
Laboratory (278 m); (2) University hospital of Oulu (138 m); (3) a campus library
of University of Oulu (93 m); and (4) Campus of University of Oulu (367 m). All
the measurements were performed in the daytime during arbitrary office hours.
The environments were not prepared in anyway for the measurements, except
for opening the doors of the corridors in advance, which had some effects on the
measurements.

2.2. Method

MCL [9,10] was utilized in order to estimate the position of the
localization target starting from an unknown position xstart and
following the centerline of the corridor thereafter. MCL utilizes a
particle filter method [20,21,9,10] to approximate the distribution
p(xt |zt) when it is too complicated to sample directly, but when
prior p(xt) can be sampled and the measurement density p(zt |xt)
can be evaluated. The particle filter utilizes importance sampling,
which proceeds by generating a set of N samples s(n) from a
priori p(xt) and then assigning to each sample a weight π (n) =
p(zt |x = s(n)) corresponding to the measurement density. The π (n)
are normalized to sum 1 and then the weighted set {(s(n), π (n))}
represents an approximation p̃(xt |zt) of the desired posterior
p(xt |zt), where a sample is drawn from p̃(xt |zt) by choosing one
of the s(n) with probability π (n). As N →∞ samples from p̃(xt |zt)
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Fig. 5. The magnetic field data. From top to bottom: Computer Engineering
Laboratory, University Hospital of Oulu, campus library of University of Oulu, and
University of Oulu campus area. Time units in legends are days. The plot shows ‖m‖
as a function of the position along the path.
arbitrarily close approximate fair samples from p(xt |zt). See [21,
9,10] for a more thorough discussion of particle filters and MCL.
The main steps of the particle filter are also presented as the part
of Procedure 1, which shows the basic MCL algorithm applying
multivariate Gaussian measurement model with mean h(x) and
covariance R

p(z|x) =
1

(2π)N/2 |R|1/2
exp

(
−
1
2
(z − h(x))TR−1(z − h(x))

)
(1)

where x = [x θ ] is the state vector for the one-dimensional case
whose elements are position x and heading θ (either 0 or π in the
one-dimensional experiments reported here), z is an observation
made from the magnetic vector field B, and h : Rn −→ R3 maps
each n-dimensional (here n = 2) state x, representing the pose of
the robot, to an observation z based on the map. The use of ‖m‖ as
an observation z yields to the single variable Gaussian probability
density function with mean ‖h(x)‖ and variance σ 2r

p(z|x) =
1

σr
√
2π
exp

(
−
(z − ‖h(x)‖)2

2σ 2r

)
. (2)

In Procedure 1, xstart represents the unknown starting position
of the robot at the beginning of the experiment. This position is
incremented by 1 m for each subsequent experiment in order to
test the effect of the initial position of the robot on the localization
performance. The performance might be affected by, e.g., sensor
aliasing anddifferences between themapand the observationdata.
In the experiments, themotionmodel of the localization targetwas

x̂t = xt−1 + w(θ) (3)

where w(θ) ∼ N (±0.25 m, σ 2q = 0.001 m
2) for which the mean

is+0.25 m and−0.25 m for θ = 0, and θ = π , respectively.

Procedure 1
Require: p(z|x) ∼ N (h(x), R)
generate N/2 particles with x = [0, xmax] and θ = 0
generate N/2 particles with x = [0, xmax] and θ = π
∆x← 0
xcorrect ← xstart
while∆x ≤ ∆xmax do
xcorrect ← xcorrect + w(0)
z t ← hobs(xcorrect)
∆x← xcorrect − xstart
for all N particles do
x̂(n)t ← x(n)t−1 + w(θ

(n))

π
(n)
t ← π

(n)
t−1p(z t |x̂

(n)
t )

end for
if 1∑N

n=1(π
(n))2

< N/2 then

draw N samples from p̃(xt |z t)
π (n) are normalized to sum 1
x̂←

∑N
n=0 π

(n)x(n)

e←
∣∣x̂− xcorrect ∣∣

for all N particles do
π (n) ← 1

end for
end if

end while

The observation for the correct state xcorrect was obtained from
the observation data (instead of map data). Function hobs(x) was
used to map x to an observation z from the magnetic vector field
B. The maximum distance ∆xmax the robot was allowed to travel
was predefined. In the reported experiments ∆xmax = 100 m
was used, i.e., the localization target was allowed to travel 100 m
(maximum) from the starting position xstart. Consequently, the



1032 J. Haverinen, A. Kemppainen / Robotics and Autonomous Systems 57 (2009) 1028–1035
Fig. 6. The effect of calibration. Grey symbols represent uncorrected measure-
ments and black symbols the measurements corrected using the transformation A
found by the calibration procedure.

position of the target had to be estimated during that travel. If
the estimation error e was ≥ 2.0 m for robot, and e ≥ 5.0 m
for person localization experiments after the completion of the
experiment, the experiment was considered failed. In Procedure
1 effective sample size criterion [22] was used for resampling, i.e.,
resampling was performed iff

1
N∑
n=1
(π (n))2

< N/2. (4)

Between resamplings, particle weights were updated in the
multiplicative manner as shown in Procedure 1. In the resampling
step a new set of N = 4000 particles was drawn from the posterior
p̃(xt |zt) with the probability π (n), where n represents the index
of the particle. At the beginning of experiments particles were
divided into two sets of equal size (2000/2000), both sets assumed
different direction of travel, i.e., the direction of travel of the
localization target along the path was assumed to be unknown (0◦
or 180◦). TheMatlab implementation of the localization algorithm,
presented in Procedure 1, was capable of running (well above)
in real-time with particle counts ≤ 4000 on a standard desktop
computer.

3. Calibration

Proper calibration of themeasurement system is required in or-
der to compensate the effects of possible sensor inclination errors
with regard to the world coordinate system (floor plane). These
errors may arise due to tilt of the robot or 3-axis magnetometer,
or non-orthogonal sensor axes. If possible inclination errors are
not compensated, an observationm from themagnetic vector field
B does not transform correctly, with regard to the world coordi-
nate system, under a robot (sensor) rotation, which is illustrated in
Fig. 6. Grey symbols in Fig. 6 represent observationsmade from the
magnetic field (projected to xy-plane) before applying a calibra-
tion transform, and black symbols represent the same observations
after the transform has been applied in order to compensate the
inclination errors of the measurement system. All measurements
in Fig. 6 were made at the same xy location of the sensor at four
different angles (around z-axis). Fig. 6 illustrates how the calibra-
tion makes the observations to transform correctly under the sen-
sor (robot) rotation, which is required for the proper operation of
mapping h : x −→ h(x) (the same applies to hobs).
Two data sets were collected for the calibration procedure. For

the first data set the robot was manually driven along a straight
line (≈9 m) while the magnetometer readings were stored. The
second data set was collected by driving the robot along the same
path but in reverse direction after which the set was re-indexed
(mirrored) in order to align the two data sets. This procedure
provided two arbitrary data sets for two different heading (0 and
π ) of the sensor. In an ideal (error free) case these two data sets
should look similar after rotating eachmagnetometer readingm in
one of the sets byπ around z-axis. If sensor inclination errors exist,
a transform A is needed, which maps sensor readings into a same
coordinate system where they transform correctly under a robot
(sensor) rotation around z-axis, i.e., having the two calibration data
sets a transform A needs to be found with property

m2 = A−1ΘπzAm1 (5)

where A is an unknown 3 × 3 transformation matrix (affine
transformation without translation component),Θπz is the known
rotation matrix (180◦ around z-axis), m1 is a measurement in the
first data set, and m2 is the corresponding measurement in the
second data set, i.e., m2 has been measured in the same position
withm1 along the path but using the different sensor heading.
Finding the transformation A is a nonlinear parameter esti-

mation problem, which can be solved, e.g., by applying Leven-
berg–Marquardt algorithm [23]. Even though the calibration data
was collected only for two different headings (0◦ and 180◦), the
transformation A will apply correctly to all possible sensor orien-
tations around z-axis.

4. Results

Fig. 7 shows an example of a one-dimensional global self-
localization experiment conducted in the Computer Engineering
Laboratory. The robot starts from an unknown position (xstart =
140 m) and drives toward xmax = 278. After traveling approxi-
mately 10 m the true position (shown with ◦) has been correctly
estimated (shown with×).
Table 1 summarizes the global self-localization experiments

where ‖m‖ was used as the observation z from B. Each table
row represents one set of experiments where each individual
experiments had a different starting position: this position was
incremented by 1 m for each experiment of the set. For example,
an experiment set conducted in Computer Engineering Laboratory
(CL) consists of 278 individual experiments (path length was
278 m). In data column of Table 1 the following symbols have
been used: CL (Computer Engineering Laboratory), HP (University
Hospital of Oulu), LB (Campus Library), CA (University Campus),
and PR (Person self-localization). All person self-localization
experimentswere conducted in Computer Engineering Laboratory.
Letter D following a number indicates how many days after the
creation of the map the observation data used in the experiment
set was acquired (e.g. CL/D41). In Table 1 symbols ê, σe, d̂, σd, and fr
are used for mean estimation error, std. of estimation error, mean
localization distance, std. of localization distance, and the failure
rate in per cent, correspondingly.
Each experiment set was conducted using different values of

the standard deviation of the measurement model σr from range
[1.0 µT, 5.0 µT]. Increasing σr increases the average distance d̂
the robot needs to travel to get localized. Larger values of σr
make the algorithm less sensitive to local variations of the map,
which increases the variance of posterior distribution p̃(xt |zt) and
makes the algorithm converge more slowly. On the other hand,
smaller values ofσr make the algorithmmore sensitive to noise and
differences between themap and the observation data, whichmay
cause localization to fail. Fig. 8 illustrates the relationship between
σr and d̂, which is nearly linear.
Table 1 also shows that person self-localization, without

proper odometric information, suffers from large bias in position
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Fig. 7. A global self-localization experiment where the robot starts from position
xstart = 140 m. The three figures illustrate how the particles concentrate near true
position after the robot has traveled approximately 10 m. This individual belongs
to experiment set CL/D82 (σR = 3.0) in Table 2.

estimates, i.e., ê is significantly larger than in robot localization
experiments. This is due to discrepancies between map and
observation data as can been observed from Fig. 11, which
shows themagnetic field data collected for person self-localization
experiments.
Table 2 shows the results of the global self-localization experi-

ments where three-dimensional vectormwas directly used as the
observation z from B. Each experiment set was conducted using
different values of the standard deviation σR of the measurement
model from range [1.0µT, 3.0µT]. Correspondingly σ 2R represents
the identical values of diagonal elements of the covariance matrix
R in Eq. (1).
Table 2 clearly illustrates the benefits of using all available

information provided by the magnetic vector field. Excluding the
person localization, the mean localization distance d̂ and its std. σd
are significantly smaller compared to results in Table 1. However,
the results of person localization experiments in Table 2 shows an
important exception, i.e., when sensor placement is not controlled
and no proper information about the angular and linear motion
of the sensor is available the localization algorithm fails in cases
where vector m is used as an observation. On the other hand, by
Table 1
Results of experiments using ‖m‖ as the observation.

Data σr (µT) ê (m) σe (m) d̂ (m) σd (m) fr (%)

CL/D41 1.0 0.13 0.16 6.00 7.91 7.2
CL/D41 3.0 0.10 0.07 11.34 6.26 1.1
CL/D41 5.0 0.10 0.07 21.73 12.41 0

CL/D82 1.0 0.12 0.09 5.94 5.45 3.2
CL/D82 3.0 0.12 0.06 12.51 6.09 0
CL/D82 5.0 0.12 0.07 21.60 11.63 0

HP/D03 1.0 0.31 0.08 5.79 3.25 0.7
HP/D03 3.0 0.28 0.05 14.56 4.68 0
HP/D03 5.0 0.28 0.04 21.01 6.62 0

LB/D02 1.0 0.31 0.07 2.96 1.31 0
LB/D02 3.0 0.30 0.04 5.90 1.75 0
LB/D02 5.0 0.29 0.03 10.88 3.65 0

CA/D15 1.0 0.63 0.23 10.76 9.93 10.3
CA/D15 3.0 0.71 0.29 19.55 8.62 0
CA/D15 5.0 0.72 0.18 31.59 14.97 1.4
PR/D05 1.0 3.47 1.87 9.98 4.02 2.9
PR/D05 3.0 3.46 1.86 23.98 7.57 0
PR/D05 5.0 3.43 2.04 45.02 12.04 0.4

Table 2
Results of experiments usingm as the observation.

Data σR (µT) ê (m) σe (m) d̂ (m) σd (m) fr (%)

CL/D41 1.0 0.11 0.08 1.28 0.87 2.5
CL/D41 2.0 0.10 0.08 2.20 1.48 0
CL/D41 3.0 0.10 0.08 3.26 2.24 0

CL/D82 1.0 0.12 0.07 1.28 0.91 1.4
CL/D82 2.0 0.12 0.07 2.23 1.52 0
CL/D82 3.0 0.11 0.07 3.30 2.16 0

HP/D03 1.0 0.29 0.07 0.74 0.54 0
HP/D03 2.0 0.29 0.05 1.37 1.02 0
HP/D03 3.0 0.28 0.05 2.25 1.70 0

LB/D02 1.0 0.28 0.05 0.50 0.30 0
LB/D02 2.0 0.28 0.05 0.82 0.54 0
LB/D02 3.0 0.28 0.05 1.63 0.71 0

CA/D15 1.0 0.71 0.30 1.69 1.65 3.0
CA/D15 2.0 0.71 0.31 2.78 1.94 0.5
CA/D15 3.0 0.71 0.29 4.12 2.07 0

PR/D05 1.0 1.51 1.00 34.56 1.91 97.8
PR/D05 2.0 3.35 1.31 33.13 5.51 92.1
PR/D05 3.0 3.55 1.05 22.52 12.32 81.3
PR/D05 4.0 2.90 1.44 20.17 10.74 57.6

using the rotation invariant observation ‖m‖ it is still possible to
achieve relatively good localization performance, as is shown in
Table 1. By utilizing inertial sensors it is possible to estimate the
motion of the sensor system in a person self-localization system
and to utilize m as the observation for enhanced localization
performance. This issue however will be addressed elsewhere.
For the discussion about the stability of the magnetic field

the standard deviation of ‖m‖ (in CL) as a function of x is
presented in Fig. 9. Five data sets between t = [0, 81] (days)
were used to compute the standard deviation. Part of deviations
can be explained by the odometric noise. The high values of
standard deviation can be however associated to local peaks of
the magnetic field. These peaks exist near doors connecting two
corridors (the doors have a steel frame), or near elevators as it
is the case for x ≈ 245 m (elevator 1 in Fig. 3), and x ≈
265 m (elevator 2 in Fig. 3). Variances of the magnetic field
introduced by the elevators and the doors are mainly caused
by deviations in the measurement path in y direction when
the robot is driven manually along the measurement path. Near
large gradients of the magnetic field deviations from the center
line of the corridor cause larger deviations to magnetic field
measurements compared to areaswhere themagnetic field ismore
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Fig. 8. The average distance d̂ the robot needs to travel in order to get localized as
a function of σr . This data is from the experiments CL/D41 and CL/D82 (see Table 1).

Fig. 9. The standard deviation of the magnetic field as a function of the robot
position x along the measurement path (CL).

uniform. An example of a strong magnetic field can bee seen in
Fig. 10, which shows the two-dimensional map of the magnetic
field of the first 70 m of the measurement path (CL). The magnetic
field around x ≈ 22 m is caused by the door 1 shown in Fig. 3.
A small deviations in the position of the robot in y direction near
x ≈ 22 m can cause relatively large deviations in magnetic
field measurements, which explains the higher variance around
x ≈ 22 m in Fig. 9. Fig. 10 illustrates how the magnetic field
inside the building varies (at least) in two dimensions, which is
the necessary prerequisite for applying the presented approach
to two-dimensional self-localization problems. The magnetic map
shown in Fig. 10 was created by measuring the magnetic field
alongmultiple longitudinal, parallel paths and by interpolating the
measurements to provide the two-dimensional map.

5. Conclusion

Localization is one of the fundamental problems in mobile
robotics, as inmany applications a robot needs to know its location
in order to perform its tasks. In this article, a global self-localization
technique that utilizes observations of the ambient magnetic field
was proposed. This study was inspired by the evidence that an-
imals use the magnetic field of Earth for true navigation. The
experiments reported in this article suggest that (especially) mod-
ern buildings with reinforced concrete and steel structures have
unique, spatially varying ambient magnetic fields that can be used
for navigation in very much the same way as Earth’s magnetic
field, but on a smaller scale. In principle, a non-uniform ambi-
ent magnetic field produces different observations, depending on
the path taken through it. The reported experiments demonstrate
the feasibility of the proposed approach. The approach provides a
Fig. 10. The magnetic field of a corridor in Computer Engineering Laboratory. A
two-dimensional map of the magnetic field of the first 70 m of the measurement
path (CL). From top to bottom:mx ,my ,mz , and ‖m‖ as a function of xy position.

promising and simple alternative for solving the global indoor self-
localization problem. The presented technique was applicable for
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Fig. 11. The magnetic field data collected for the person self-localization
experiments.

a one-dimensional localization problem, i.e., for localizing a robot
or a person within corridors. However, the proposed approach can
be generalized to two- or three-dimensional localization problems,
assuming that maps can be provided. In some applications the
proposed approach may provide an alternative to machine vision
[24–26] based approaches, especially when only one-dimensional
localization is needed orwhen the illumination of the environment
changes. On the other hand, the proposed technique may also be
used in parallel with machine vision and range finder based ap-
proaches in order to overcome possible sensor aliasing problems.
The reported experiments suggest that the ambient magnetic

field may remain sufficiently stable for longer periods of time. In
the reported experiments the magnetic field remained nearly un-
changed, although some variations were observed. These varia-
tions did not have a large impact on the localization performance,
however. On the other hand, the magnetic field is not sensitive
to many environmental changes that may affect other localization
techniques such as vision or range finder based techniques, which
rely on visual or geometrical features. For example, the magnetic
field is not sensitive to non-magnetic dynamic or static objects or
changes in illumination.
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