
Summer Course on Developing on ROS Framework — Day 1

GNU/Linux and ROS Introduction

Contents

1 Installation 2

2 Byobu Console 3

3 Bash Basics 3
3.1 Navigating Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Managing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Command Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Chaining commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.6 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.7 Nano Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.8 Managing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Shell Tools 6
4.1 Grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Sed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 Awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 Mmv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.6 Tar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 SVN 8
5.1 Setting up a repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Using SVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 Saving a patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Git 9
6.1 Setting up a repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Using Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Using branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4 Using remotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.5 Working model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 ROS Setup 12

8 ROS Concepts 12
8.1 Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.4 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.5 Changes in ROS Groovy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9 ROS Basics 14
9.1 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.3 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.4 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.6 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



9.7 Bag Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10 Creating Packages 16
10.1 Catkin Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.2 Creating a package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.3 ROS Package Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Installation

For this course we will use ROS Groovy, which is the current stable version. ROS Groovy can be
easily installed in Ubuntu 12.04 or 12.10. We recommend that you install Ubuntu 12.04 since it is a Long
Term Support (LTS) release. It will be supported until April 2017. Ubuntu 12.10 is no longer supported
(it was replaced by 13.04, which ROS does not support). We recommend that you update again when
Ubuntu 14.04 is released, which will be a LTS release again.

There is a virtual machine with Ubuntu and ROS already installed that can be downloaded from
http://www.ros.org/wiki/ROS/Installation.

Install Ubuntu by downloading it from http://www.ubuntu.com/ or the mirror inside IST at http:
//ftp.rnl.ist.utl.pt/pub/ubuntu/releases/. Install ROS by following the instructions at http:

//www.ros.org/wiki/groovy/Installation/Ubuntu (install Desktop-Full).

Install some more packages by issuing the following command in a terminal window:
sudo apt-get install build-essential automake autoconf libboost-all-dev \

cmake cmake-curses-gui subversion subversion-tools git-all gitk \

byobu mmv htop rar p7zip lzop myspell-pt-pt flashplugin-installer

This will install:

• build-essential automake autoconf libboost-all-dev — Tools needed for development of
programs, probably most of it was already installed by ROS.

• cmake cmake-curses-gui — CMake, including ccmake.

• subversion subversion-tools — Subversion.

• git-all gitk — Git and Gitk tool.

• byobu — Byobu is the terminal that we will use.

• mmv — Utility to move multiple files.

• htop — Process viewer.

• rar p7zip lzop — (Optional) Common compression tools.

• myspell-pt-pt — (Optional) Portuguese dictionary for Firefox and other programs.

• flashplugin-installer — (Optional) Adobe Flash Player plugin, needed by many sites.

Also install ack by issuing the following 3 commands:
mkdir -p $HOME/bin

wget -c -T 20 -t 20 ’http://betterthangrep.com/ack-standalone’ -O $HOME/bin/ack

chmod 0755 $HOME/bin/ack

2

http://www.ros.org/wiki/ROS/Installation
http://www.ubuntu.com/
http://ftp.rnl.ist.utl.pt/pub/ubuntu/releases/
http://ftp.rnl.ist.utl.pt/pub/ubuntu/releases/
http://www.ros.org/wiki/groovy/Installation/Ubuntu
http://www.ros.org/wiki/groovy/Installation/Ubuntu


2 Byobu Console

Byobu is a terminal program with some very useful enhancements. Sometimes, while working with
ROS, you will have to keep a large number of terminal windows open. Byobu will be a huge help with
that. Byobu is specially useful when run over SSH: it lets you have multiple terminals in the same
connection, and will keep your programs running if the connection dies.

Open Byobu and lock it to the launcher. Try the following commands:

• F2 — Create a new window

• exit or Ctrl-D — Closes the current window

• F3 — Move to the previous window

• F4 — Move to the next window

• F7 — Enter copy/scrollback mode

• F8 — Rename the current window

• F9 — Configuration Menu, here you can access help and learn how to split windows

• Shift-F12 — Disable F shortcuts, so you can use them in other programs

Note that Linux has two copy-paste buffers:

• The normal Ctrl-C Ctrl-V buffer. In the terminal window you have to use Ctrl-Shift-C

Ctrl-Shift-V.

• Everything you select is automatically copied and can be pasted with the middle mouse button, or
simultaneously pressing the left and right buttons.

3 Bash Basics

Start by launching Byobu, if not already running.

• Bash Manual
http://www.gnu.org/software/bash/manual/

3.1 Navigating Directories

Filesystems are organized as directories or folders. To view the contents of the current directory,
type:
ls

To change directory, use the command:
cd directory name

To create a directory, use the command:
mkdir directory name

To remove an empty directory, use the command:
rmdir directory name

To remove a directory and all of its contents (without possible undo), use the command:
rm -rf directory name

To know the current directory, use the command:
pwd

Some directory names have special meanings:

• / — The root directory

3

http://www.gnu.org/software/bash/manual/


• . or $PWD — The current directory (process working directory)

• .. — The parent of the current directory

• - or $OLDPWD — The directory where you were before the last cd

• ~ or $HOME — The current user home directory (if you type cd without an argument, you go here)

3.2 Managing files

To copy a file, use the command:
cp source destination

To move a file, use the command:
mv source destination

For both cp and mv, the -r (recursive) option makes it work on directories.
To remove a file, without possible undo, use the command:

rm file

3.3 Command Basics

command arg1 arg2 . . . argn
When you enter the previous line in Bash, the command in the current directory, receiving as arguments

arg1 to argn. While it executes, the command will receive whatever you type in the shell in its Standard
Input. The command also has two output channels: Standard Output and Standard Error. Both will
be displayed in the terminal, but it’s important to know there are two: there are tools to process them
differently.

Notice the arguments are separated by spaces. To provide an argument that has a space, you have
to surround it with quotes (") or escape the space with a \.

Let’s talk about echo, it’s one of the simplest commands. It simply takes all of its arguments and
prints them to the standard output separated by spaces. Notice that Bash interprets all of the arguments
before passing them to the command. Arguments are passed separated, C programs receive them in the
argv list. That is why these two commands have exactly the same output:
echo one two

echo one two

The command cat works in a very similar way. However, instead of reading from the arguments, it
reads from the standard input. If it has any argument, the argument is assumed to be a file name and
it reads from the file instead. It is named cat from concatenate: It concatenates all of the files passed
as arguments and prints them. Try cat without any argument, it will duplicate whatever you type (end
with Ctrl-D):
cat

Or try reading from a file:
cat /etc/issue

Now, let’s make this interesting. Here is a list of some available redirections:

• c1 > file or c1 1> file — Standard output of c1 is written to file (overwriting).

• c1 >> file or c1 1>> file — Standard output of c1 is appended to file.

• c1 2> file — Standard error of c1 is written to file (overwriting).

• c1 2>> file — Standard error of c1 is appended to file.

• c1 &> file — Both standard output and standard error of c1 is written to file (overwriting).

• c1 &>> file — Both standard output and standard error of c1 is appended to file.

• c1 < file — Standard input of c1 is read from file.

• c1 2>&1 — Standard error of c1 is written to standard output.

4



• c1 1>&2 or c1 >&2 — Standard output of c1 is written to standard error.

• c1 | c2 — Standard input of c2 is read from standard output of c1.

• c1 |& c2 or c1 2>&1 | c2 — Standard input of c2 is read from both standard output and standard
error of c1.

Try to test and combine the above! Note that less is a good way to see the contents of a file:
less file.txt

3.4 Chaining commands

Commands return a number when they terminate (specified by the return statement in the main

function of C programs). By convention, 0 is success and anything not 0 is an error code. You can check
the return code of the previous command with:
cat inexistentfile

echo $?

There are several ways to specify multiple commands at the same time (but not necessarily in the
same line):

• c1 && c2 — Execute c2 only if and when c1 terminates successfully.

• c1 || c2 — Execute c2 only if and when c1 terminates without success.

• c1 ; c2 — Execute c2 after c1, regardless of the return code.

• c1 & — Execute c1 in the background (use fg to bring it to foreground while it’s running).

• c1 & c2 — Execute c1 in the background and c2 right away.

3.5 Environment Variables

Many features of Bash and other programs are configured using environment variables. These are
simple pairs of name and value, both text strings. To see all mappings defined, use the command env,
piped to less since the list is quite long:
env | less

To set a variable, use the export command:
export TEST="Test variable"

To check the value of only one particular variable, you can feed it to the echo command, and Bash
will replace it by the actual value before executing echo:
echo $TEST

One of the variables is quite relevant, and should be explained here: $PATH. This is a colon (:)
separated list of directories, in which Bash will search for commands. Every time you type a command,
bash will search for it in each directory in $PATH by order, until it is found.

3.6 Initialization

When Bash starts, it reads /etc/profile and then ~/.profile.

• /etc/profile, by default, executes /etc/bash.bashrc and every script inside /etc/profile.d/.

• ~/.profile, by default, executes ~/.bashrc. Note that it also adds ~/bin to $PATH, so you can
have your executables easily placed in ~/bin.

When you want to execute something every time Bash starts, you should add it to the end of
~/.bashrc. Our ROS configuration will be put there!

If you want to run one of these files manually, you have several alternatives:

5



• source file — Reads file and executes every line in the current shell (this is the correct way to
load ~/.bashrc after changing it).

• . file — Same as above.

• bash file — Starts a new Bash. The only thing that new Bash will do is execute the script and
exit. Therefore, any exports done there will not be applied to the current Bash.

• sh file — Almost the same as above, but uses sh instead of Bash. sh is the system default shell.
By default, in Ubuntu, it is dash, a lightweight shell.

3.7 Nano Editor

Ubuntu comes with a very simple editor called nano. Try it:
nano test.txt

less test.txt

Notice the commands in the bottom lines, Ctrl-X will exit asking you if you want to save.
We will use nano in all command examples, but feel free to use whatever editor you are more com-

fortable with.
The default editor is defined in the $EDITOR environment variable. You can check yours with:

echo $EDITOR

Now set the default editor to nano. Edit ~/.bashrc with:
nano ~/.bashrc

and, in the very end, add:
export EDITOR=nano

exit and save. Now reload ~/.bashrc:
source ~/.bashrc

3.8 Managing Processes

To get a list of running processes, use:
ps aux

Htop is a nice program to view all running processes (some appear in duplicate because they have
multiple running threads):
htop

To kindly ask one or more processes to terminate, you can use either of the commands:
kill process numbers
killall process names

When killed with the previous commands, the processes might not terminate. To kill them without
giving a chance to refuse, use:
kill -9 process numbers
killall -9 process names

4 Shell Tools

4.1 Grep

grep is a simple tool to filter a stream. Use it as:
grep pattern file

or
cat file | grep pattern

The pattern is a regular expression. Find out more about regular expressions here: http://www.

grymoire.com/Unix/Regular.html. Special characters have special meanings in regular expressions,
but text characters have no special meaning. You can search for strings in text files easily:
grep name /proc/cpuinfo

6

http://www.grymoire.com/Unix/Regular.html
http://www.grymoire.com/Unix/Regular.html


4.2 Ack

For programmers, ack is a very useful tool. It is similar to grep, but automatically searches in the
current directory and all subdirectories, only it source code files. For example, to find where the Boost
Circular Buffer class is defined, you can use:
cd /usr/include/boost/

ack "class circular_buffer"

cd -

4.3 Sed

sed is a very flexible stream editor. The most common usage it to replace text in files. By default, it
reads from standard input or a file specified as an argument, and prints the results to standard output:
sed ’s/from/to/g’ < file

sed ’s/from/to/g’ file

To change a file in place, use -i:
sed ’s/from/to/g’ -i file

Try this simple example:
sed ’s/Ubuntu/OS/g’ /etc/issue

A good tutorial can be found at: http://www.grymoire.com/Unix/Sed.html.

4.4 Awk

awk is a more complex tool. It has a simple programming language, which is very good to quickly
process files. Invoke it as:
awk ’SCRIPT’ < file

awk ’SCRIPT’ file

The script usually looks like:
BEGIN {...} {...} END {...}

The BEGIN section runs before anything else and the END section runs in the end. The middle section
runs once for every line. All three are optional. In the middle section, the variable $0 represents the
whole line, and variables $1 to $n represent columns.

Let’s see how to generate a sequence of numbers from 1 to 19 and calculate the average:
seq 19 | awk ’{sum+=$1; count++} END {print "Average: " sum / count}’

4.5 Mmv

mmv is a simple tool to move multiple files. Invoke it as:
mmv "source" "destination"

In the source, ? matches a single character and * matches as many characters as it can. In the
destination, you use #1 to #n for each ? and * in the source.

For example:
mmv "Chapter ? - *.pdf" "Chapter about #2 number #1.pdf"

4.6 Tar

In Unix environments, compression of files usually happens in two steps: grouping files to compress
and actually compressing. Compressing tools work only with one file. tar is a tool to group files. It is
so flexible that it can invoke the compression command simultaneously. To compress, the best options
are:

• xz - Extreme compression.
tar cavf archive.tar.xz file1 ... filen

• lzop - Fastest compression, but not installed by default in Ubuntu.
tar cavf archive.tar.lzo file1 ... filen

7

http://www.grymoire.com/Unix/Sed.html


• gz - Old program, relatively fast, can be found everywhere.
tar cavf archive.tar.gz file1 ... filen

To decompress, use:
tar xavf archive.tar.??

5 SVN

http://subversion.apache.org/

Subversion is a centralized version control system. It uses a single central repository from which users
can create working copies.

• Version Control With Subversion
http://svnbook.red-bean.com/

5.1 Setting up a repository

• Create a repository for these examples
svnadmin create /tmp/svndemo

• Checkout the empty repository
svn checkout file:///tmp/svndemo

cd svndemo

• Create the initial structure
mkdir trunk tags branches

svn add trunk tags branches

• Commit (this will use your $EDITOR)
svn update

svn status

svn diff

svn commit

• Clean up
cd ..

rm -rf svndemo

• Now the repository is ready for work.

5.2 Using SVN

• We usually checkout only the trunk directory, and keep it around to work. For this tutorial, the
repository is stored in /tmp/svndemo/ but usually this in a SVN server.
svn checkout file:///tmp/svndemo/trunk svndemo

cd svndemo

• Edit some file, write some text
nano test.txt

• SVN status will display an unknow file
svn status

• So we must add it before commiting
svn add test.txt

• And commit it
svn update

svn status

svn diff

svn commit

8

http://subversion.apache.org/
http://svnbook.red-bean.com/


• If someone else was working on the repository, you should update frequently to get the latest
changes
svn update

• Edit the file again, change or add some text
nano test.txt

• SVN status will display a modified file
svn status

• The files must only be added once, so no need to add it again

• Then you can commit it right away
svn update

svn status

svn diff

svn commit

• Try checking what you have been doing
svn update

svn log -v | less

5.3 Saving a patch

This is a good metod to save work without committing it, so you can give it directly to someone else
or keep it somewhere.

• Edit something, change or add some text
nano test.txt

svn status

• The file must be added so it appears as added or modified in svn status

• Save a patch (optionally compressing it)
svn diff > work.patch

xz -9ev work.patch

• Now you can undo your changes, so the local copy reflects the repository again
svn revert -R .

svn status

• Apply the patch, and your work should be back
xzcat work.patch.xz | patch -p0

svn status

6 Git

http://git-scm.com/

Git is a distributed version control system. Although central repositories can be created in servers,
every copy contains the full repository and users can synchronize their copies directly without passing
through the server.

• A successful Git branching model
http://nvie.com/posts/a-successful-git-branching-model/

• GitHub help
https://help.github.com/

• Pro Git
http://git-scm.com/book/

9

http://git-scm.com/
http://nvie.com/posts/a-successful-git-branching-model/
https://help.github.com/
http://git-scm.com/book/


• Git Magic
http://www-cs-students.stanford.edu/~blynn/gitmagic/

6.1 Setting up a repository

• First, configure some global Git variables.
git config --global user.name "Your Name Here"

git config --global user.email "your_email@example.com"

git config --global color.ui auto

• To create an empty repository, just run git init on your working directory
git init gitdemo

cd gitdemo

6.2 Using Git

• Edit some file, write some text
nano test.txt

• Everytime you want to commit a file, you must first add it to the stage
git status

git add test.txt

git diff --staged

• Only then you can commit
git commit

• Edit the file again, change or add some text
nano test.txt

• If it’s only a few files, you can add to the stage and commit in the same command, but only if the
files are already known to Git
git status

git diff

git commit test.txt

• Adding to the stage may seem an unecessary extra step, but it allows us to have more control over
commits. Commits should be simple and as small as possible, to better describe the changes and
to make it easier to find bugs. You can add only the necessary files to the stage. You can even add
only some changes inside files!

• You can check what you have been doing with
git log | less

• Or use the gitk tool:
gitk --all

6.3 Using branches

Git makes it very easy to work with branches, like different versions of the same repository. Git
organizes commits as a tree, and branches are labes to a specific commit.

• The default branch is called master. You can check the branches with
git branch -a

• Create a new branch from master, name it test
git checkout -b test

The -b flag creates a new branch. Now master and test point to the same commit. Only when
you commit something will the commit tree branch.

10

http://www-cs-students.stanford.edu/~blynn/gitmagic/


• Edit some file, write some text and commit it
nano test.txt

git status

git diff

git commit test.txt

• Switch back to the master branch
git checkout master

• To merge, you have two options:

– Without fast-forward, the merge will always be a commit with the merged code. This will
make it obvious that a branch was used to develop the code when looking at the commit
history. This is the recommended way to merge the test branch, so that commits done to
that branch will be easier to spot when looking at the commit history.
git merge --no-ff test

– Using fast-forward (only when possible), if the current branch is a predecessor of the branch
to be merged, the current branch will simply be fast-forwarded. You will not have a commit
for the merge and you will not be able to tell in which branch the code was developed. This
is useful when merging an updated version of the branch from someone else.
git merge test

• Then you can delete the test branch
git branch -d test

• Create a new branch to be used as an example later, with some modifications, and leave it in the
master branch.
git checkout -b test2

nano test.txt

git status

git diff

git commit test.txt

git checkout master

6.4 Using remotes

• Git repositories stored in servers, like GitHub, are bare repositories that are not prepared to work
there directly, but to receive modifications from others. Let’s create one of those. cd ..

git clone --bare gitdemo/ gitdemo.git

• Now let’s try cloning the bare repository. This is the same process used for public repositories,
gitdemo.git could be a web link.
git clone gitdemo.git gitdemoclone

cd gitdemoclone

• Notice this repository has only the master branch, but knows about the remote existance of master
and test2. The local master branch is configured to track the remote origin/master. That is,
it will push and pull from that remote branch later.
git branch -avv

git remote show origin

• Now you can make some changes and commit them
nano test.txt

git status

git diff

git commit test.txt

• After all your changes, push your commits to the remote repository. This will only push the current
branch.
git push origin

11



• To ckeckout a branch that does not exist locally, use
git checkout -b test2 origin/test2

• You can make some changes in this branch and the push all branches to the remote repository with
git push --all

• To get updated code from the server, you must first fetch to download the origin branches, and
then merge
git fetch origin

git merge test2 origin/test2

• Or, if the local branch is tracking the remote branch, you can do this in one step only with the
shortcut
git pull

6.5 Working model

Git is very flexible, and using branches can be confusing. The branching model linked above proposes
the following:

• The master branch should always be stable, tested and demo-ready.

• The develop branch contains code that should be working, but we are not so sure it is correct and
bug-free as the master branch. Merge develop into master only when you are sure it is stable
and well tested.

• Create feature branches when needed. When implementing a new feature, create a new branch
with a descriptive name. Use that branch while working and testing. You can merge from develop

frequently to keep the branch updated. Merge into develop when the implementation is stable
and tested.

When working on servers like GitHub, the official version of a project usually has a well-known
repository. To contribute to it, you fork the repository online, creating your own copy in your GitHub
account. Your copy is the remote origin while the main repository of the project is usually known as
upstream. When you clone your repository to your computer to work, you can push all your branches to
GitHub. From upstream you only fetch. To contribute to the main repository of the project, you create
a pull request online in GitHub, that whoever decides for the project will decide to accept or not.

7 ROS Setup

Now that you know about ~/.bashrc, the setup instructions of ROS should make more sense. Make
sure your ~/.bashrc ends with a line including the ROS setup script.

To make sure everything is ok, try:
rospack profile

env | grep ROS

You should see a list full of /opt/ros/groovy directories.

8 ROS Concepts

8.1 Topic

Topics have two major modes of operation:

• Latched — When a publisher publishes a message, it is sent to every connected subscriber. The
publishers keep the last sent message in memory. When a new subscriber connects, the last
published message is immediately sent to it. Use this when you want the last published message,
independently of how old it is.

12



• Not latched — When a publisher publishes a message, it is sent to every connected subscriber and
forgotten about. Use this when you want messages to be events, that are only important in the
moment when they are produced and not in the future.

Topics have a queue size, set it to:

• 1 — If you only care about the most recent message (ex. when publishing messages). This is the
most common situation.

• 100 (or some other large value) — If you care about the sequence of messages or want to receive all
messages (ex. detected persons in a surveillance system). Note that you might still loose messages
if the queue gets full. This only happens if the system is overloaded, and there is no way around
this limitation.

8.2 Parameters

Use parameters only for configuration parameters. These are either:

• Things that do not change during execution (ex. the robot number);

• Things that can only be changed manually and not likely to change (ex. parameters of some
algorithm that you might want to finetune, but will be static after this).

Note that parameters cannot be stored in ROS Bags. Therefore, if two nodes communicate using
parameters, offline development and debugging will be much more difficult.

Parameters can be cached in the nodes to make access much faster. Note, however, that this places
a great load on the master: it has to know what parameters the nodes have cached, and update them
every time a parameter gets updated. This is the best option for parameters that are accessed often and
rarely change: those of the second type listed above.

8.3 Services

Services are not that common in practice. Most times, when you want to transmit a message directly
to a node, you still use a topic. Services cannot be stored in ROS Bags. Use services only when you want
to make a request and have a specific response to that request. Services are useful to query other nodes
for exact data or offload computation to another node (which has to be shared or reside in a different
computer, or else a library is a better option).

8.4 Infrastructure

A ROS Core is composed of three components:

• ROS Master — Central nameserver, knows about all nodes, topics and services and where to find
them. Note that topics and services communicate directly between nodes, but first have to ask the
master the address of the publisher/server.

• ROS Parameter Server — Stores the parameters.

• rosout node — Merges logging output from all nodes so that it can be easily read.

A ROS Core must always be running in a ROS System. Using the roslaunch command automatically
launches the ROS Core, but in other situations it has to be launched with the roscore command.

8.5 Changes in ROS Groovy

From ROS Fuerte to ROS Groovy, several big changes took place. Two are specially important:

• Change from rosbuild to catkin — The packaging system was redesigned. The concept of stacks
disappeared, being replaced by metapackages. The manifest file in packages was renamed from
manifest.xml to package.xml. Some tools to create and manage packages were also changed.

13



• Change to Qt — Graphical tools were changed to use the Qt framework. Names changed: Before,
graphical tools started with rx (ex. rxconsole). Now, they start with rqt_ (ex. rqt_console).
There is a main tool rqt from which all others can be accessed.

9 ROS Basics

Now, all those F-keys of Byobu will start to be pretty useful, since you have to run many commands
simultaneously. Remember: F2 creates a new window, F3 and F4 alternate windows, Ctrl-C termi-
nates a program (ROS terminates cleanly with Ctrl-C) and Ctrl-D closes the standard input of Bash,
terminating it and closing the window.

In this section, I’ll summarize a few ROS tutorials about the basics:
http://www.ros.org/wiki/ROS/Tutorials/UnderstandingNodes

http://www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics

http://www.ros.org/wiki/ROS/Tutorials/UnderstandingServicesParams

http://www.ros.org/wiki/ROS/Tutorials/UsingRqtconsoleRoslaunch

9.1 Core

In one Byobu window run
roscore

and leave it running.

9.2 Nodes

In another Byobu window run
rosrun turtlesim turtlesim_node

and leave it running. rosrun is one way to launch nodes in ROS. It is the same as running the node
executable directly, but with rosrun you don’t have to know the full path, only the package name is
necessary.

In another Byobu window run
rosrun turtlesim turtle_teleop_key

and leave it running. Now you can move the turtle with the arrow keys!

In another Byobu window run
rosnode list

This will list all running nodes, which is very useful in more complex situations. You can also try
rosnode info /turtlesim

to get more information about the node.

9.3 Topics

To get an overview of the system, you can try
rqt_graph

or simply
rqt

and then select the ROS Graph plugin.

rostopic is one of the most useful commands in ROS. Get the list of what it can do with
rostopic help

Listing topics is an everyday operation in ROS:
rostopic list

You can see in real time what is passing in a topic:
rostopic echo /turtle1/command_velocity

then go to the window where teleop is running and give it some command.

There is a nice way to see numerical topics:
rqt_plot /turtle1/command_velocity/linear

14

http://www.ros.org/wiki/ROS/Tutorials/UnderstandingNodes
http://www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics
http://www.ros.org/wiki/ROS/Tutorials/UnderstandingServicesParams
http://www.ros.org/wiki/ROS/Tutorials/UsingRqtconsoleRoslaunch


Publishing to a topic is quite easy. First you must know the type of the topic:
rostopic info /turtle1/command_velocity

then, check the message fields so you know what to publish:
rosmsg show turtlesim/Velocity

then you can publish directly from the command line:
rostopic pub -1 /turtle1/command_velocity turtlesim/Velocity "angular: 1"

or, if you want to specify the whole message:
rostopic pub -1 /turtle1/command_velocity turtlesim/Velocity -- 0 1

The data to publish in in YAML language. See http://www.ros.org/wiki/ROS/YAMLCommandLine

for details.

9.4 Services

The rosservice command works similarly to rostopic. Try:
rosservice help

rosservice list

rosservice info spawn

rossrv show turtlesim/Spawn

rosservice type spawn | rossrv show

rosservice call spawn 2 2 0.2 ""

Note that it is not possible to echo services.

9.5 Parameters

Try these examples:
rosparam help

rosparam list

rosparam get background_g

rosparam get /

rosparam set background_g 200

Turtlesim is programmed in a way that we have to redraw for this to take effect:
rosservice call clear

There are dump and load commands, that dump and load parameters from files. The load command
is very useful to load robot configuration on initialization. roslaunch has a command to make this very
simple.

9.6 Logging

Run these two commands simultaneously:
rqt_logger_level

rqt_console

Now, go to the teleop window and hit a wall. In the rqt_logger_level window, check the nodes
/teleop_turtle and /turtlesim. In the loggers list, both have a logger named ros.turtlesim. This
is the logger controlled by the program. Try changing each to Debug and move the turtle.

About the levels: http://www.ros.org/wiki/Verbosity%20Levels.

9.7 Bag Files

ROS bags are a easy way to record topic messages. You can record multiple topics into the same
bag. Try it with:
rosbag record /turtle1/command_velocity /turtle1/pose -o testbag

Now you have a bag recorded. Note that testbag is the prefix to the bag file name, you can record
multiple bags with this command and the output is not overwritten. There is also a -a option that
records every topic, but this is not good because it records all the logging output (and with image
publishers it records the images in multiple formats) making the bag huge.

15

http://www.ros.org/wiki/ROS/YAMLCommandLine
http://www.ros.org/wiki/Verbosity%20Levels


Now try to play the bag. The -l option makes the bag play in loop, this is very useful during
development.
rosbag play -l testbag_*.bag

There is a nice tool to inspect bags:
rqt_bag testbag_*.bag

Note that to compress bags for storage, you don’t have to use tar, but can use xz directly:
xz -9ev testbag_*.bag

xz -d testbag_*.bag.xz

10 Creating Packages

ROS is organized in packages, that might contain nodes, messages types, scripts, and so on. In ROS
Groovy, the system to manage packages is called catkin. You have to create a catkin workspace in your
home, and inside of it you can create packages.

10.1 Catkin Workspace

Let’s create the catkin workspace:
mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/src

catkin_init_workspace

cd ~/catkin_ws/

catkin_make

source devel/setup.bash

This last line sets up ROS to use your workspace. Add it to your ~/.bashrc after the ROS initial-
ization.

10.2 Creating a package

To create a package, go to the src directory of your workspace and use catkin:
cd ~/catkin_ws/src

catkin_create_pkg test_package roscpp

In this case, test_package is the name of the package and it depends on roscpp. C++ code for
ROS uses libraries that are in the package roscpp. Python code will need rospy. A package can depend
on both simultaneously, and any other packages. To add dependencies after a package is created, edit
the file package.xml.

10.3 ROS Package Tools

There are two useful commands to navigate packages: roscd and rosls. From any directory you can
do:
roscd test_package

and it changes to the package directory. Similarly, to list contents use:
rosls test_package

16


	Installation
	Byobu Console
	Bash Basics
	Navigating Directories
	Managing files
	Command Basics
	Chaining commands
	Environment Variables
	Initialization
	Nano Editor
	Managing Processes

	Shell Tools
	Grep
	Ack
	Sed
	Awk
	Mmv
	Tar

	SVN
	Setting up a repository
	Using SVN
	Saving a patch

	Git
	Setting up a repository
	Using Git
	Using branches
	Using remotes
	Working model

	ROS Setup
	ROS Concepts
	Topic
	Parameters
	Services
	Infrastructure
	Changes in ROS Groovy

	ROS Basics
	Core
	Nodes
	Topics
	Services
	Parameters
	Logging
	Bag Files

	Creating Packages
	Catkin Workspace
	Creating a package
	ROS Package Tools


