
Institute for Systems and Robotics - Lisboa

Short Course on ROS Programming 2020
Part 1

Rodrigo Ventura
Institute for Systems and Robotics

Instituto Superior Técnico
Portugal

rodrigo.ventura@isr.tecnico.ulisboa.pt

[Short course on ROS programming 2020]

Portugal Chapter

Institute for Systems and Robotics

What is ROS?
• ROS = Robot Operating System
• Framework for robot software development providing operating

system-like functionality

• Originated at Stanford Artificial Intelligence Lab,
currently managed by Open Robotics

• Works quite well in Linux Ubuntu, but there are bindings to Java,
Javascript, C#, and can be tunneled via websockets

• Large user base; getting widespread use

• ROS users forum: http://answers.ros.org

http://answers.ros.org

Institute for Systems and Robotics [source: https://slideplayer.com/slide/7335359/]

Institute for Systems and Robotics

Basic concept #1: Node

• Modularization in ROS is achieved by operating system processes
• Node = a process that uses ROS framework
• Nodes may reside in different machines transparently
• Nodes get to know one another via roscore

• roscore acts primarily as a “name server”, i.e., maps names to nodes
• Nodes use the roscore running in localhost by default

overridden by the environment variable ROS_MASTER_URI

roscore

nodes nodes

Institute for Systems and Robotics

Basic concept #1: Node
Demo: launching roscore

Institute for Systems and Robotics

Basic concept #2: Topic
• Topic = mechanism to send messages among nodes
• Follows a publisher-subscriber design pattern

• Publish = to send a message to a topic
• Subscribe = get called whenever a message is published
• Published messages are broadcast to all Subscribers
• Example: LIDAR publishing scan data

topic

publisher subscribers

Institute for Systems and Robotics

Basic concept #2: Topic
Demo: publishing an “Hello world” String to topic /xpto

Institute for Systems and Robotics

Basic concept #3: Service
• Service = mechanism for a node to send a request to another

node and receive a response from it in return
• Follows a request-response design pattern

• A service is called with a request structure, and in return, a
response structure is returned

• Similar to a Remote Procedure Call (RPC)
• Example: reset location algorithm

service

client server
request

response

Institute for Systems and Robotics

Basic concept #3: Service
Demo: querying and calling a service

Institute for Systems and Robotics

Message types
All messages (including service requests/responses) are defined in text files

Contents of sensor_msgs/msg/LaserScan.msg:

Header header # timestamp in the header is the acquisition time of

 # the first ray in the scan.

 #

 # in frame frame_id, angles are measured around

 # the positive Z axis (counterclockwise, if Z is up)

 # with zero angle being forward along the x axis

float32 angle_min # start angle of the scan [rad]

float32 angle_max # end angle of the scan [rad]

float32 angle_increment # angular distance between measurements [rad]

float32 time_increment # time between measurements [seconds] - if your scanner

 # is moving, this will be used in interpolating position

 # of 3d points

float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]

float32 range_max # maximum range value [m]

float32[] ranges # range data [m] (Note: values < range_min or > range_max should be discarded)

float32[] intensities # intensity data [device-specific units]. If your

 # device does not provide intensities, please leave

 # the array empty.

Institute for Systems and Robotics

Topic internals
Note: UDP transport
is also supported.

Institute for Systems and Robotics

Development

• Two major languages are supported:

– C++

– Python

• ROS provides a portable build system (catkin, replacing rosbuild)

• Package = encapsulation of sources, data files, and building files

• The code reuse units in ROS are packages

• A large variety of packages can be found on the web

• examples: sensor drivers, simulators, SLAM, image processing, etc.

Institute for Systems and Robotics

Command line tools

rosnode is a command-line tool for printing information about ROS Nodes.

Commands:

rosnode ping test connectivity to node

rosnode list list active nodes

rosnode info print information about node

rosnode machine list nodes running on a particular machine or list machines

rosnode kill kill a running node

rosnode cleanup purge registration information of unreachable nodes

Institute for Systems and Robotics

Command line tools

rostopic is a command-line tool for printing information about ROS Topics.

Commands:

 rostopic bw display bandwidth used by topic

 rostopic echo print messages to screen

 rostopic find find topics by type

 rostopic hz display publishing rate of topic

 rostopic info print information about active topic

 rostopic list list active topics

 rostopic pub publish data to topic

 rostopic type print topic type

Institute for Systems and Robotics

Command line tools

rosservice is a command-line tool for printing information about ROS Services.

Commands:

 rosservice args print service arguments

 rosservice call call the service with the provided args

 rosservice find find services by service type

 rosservice info print information about service

 rosservice list list active services

 rosservice type print service type

 rosservice uri print service ROSRPC uri

Institute for Systems and Robotics

Command line tools
rosbag is a command-line tool for manipulating log files (a.k.a. bags)

Available subcommands:

 check

 compress

 decompress

 filter

 fix

 help

 info

 play

 record

 reindex

topics

ROS bag

rosbag record ...

topics

ROS bag

rosbag play ...

Institute for Systems and Robotics

Useful ROS facilities

• Parameters: repository of parameters (stored in the roscore)
– Loading from files (formatted in YAML)
– Dynamic update
– Command-line utility: rosparam

course_name: “SAut”

robot1:
 name: "Calvin"
 height: 0.5

robot2:
 name: "Hobbes"
 height: 1.0

$ rosparam load params.yaml
$ rosparam list
/course_name
/robot1/height
/robot1/name
/robot2/height
/robot2/name
[...]
$ rosparam get course_name
SAut
$ rosparam get /robot2/name
Hobbes

params.yaml

Institute for Systems and Robotics

Useful ROS facilities

• Launch files: XML file specifying the launch of multiple nodes
– Loading of parameters
– Remapping topic names, parameters, etc.
– Multiple machine support
– Command-line utility: roslaunch

<?xml version="1.0"?>
<launch>

<arg name="map" default="$(find scout_maps)/isr8-v05cr.yaml"/>
<param name="map" type="string" value="$(arg map)"/>
<rosparam file="$(find scout_config)/mbot.yaml"/>
<include file="amcl.launch"/>
<node name="navigation" pkg="scout_navigation" type="navigator">

<param name="~guidance_method" type="string" value="fmm"/>
<param name="~platform_mode" type="string" value="omni"/>

</node>
</launch>

Institute for Systems and Robotics

Useful ROS facilities

• TF framework: represents geometric transformations in 3D,
position and orientation (6-DoF)

Institute for Systems and Robotics

Useful ROS facilities

• TF framework: de facto standard frame assignment:

Institute for Systems and Robotics

Useful ROS facilities
• RVIZ: visualisation framework

Institute for Systems and Robotics

Useful ROS facilities
• Gazebo: physics simulation framework

gzserver

gzclient

socket

Institute for Systems and Robotics

Useful ROS facilities
• Gazebo: physics simulation framework

Koenig, N., & Howard, A. (2004). Design and use paradigms for
gazebo, an open-source multi-robot simulator. IROS 2004. IEEE.

gzserver

Institute for Systems and Robotics

Useful ROS facilities

• Actionlib framework: state-full scheme to manage action execution

Calls for start/stop action Performs the action

Institute for Systems and Robotics

Useful ROS facilities

• Actionlib framework: state-full scheme to manage action execution

Institute for Systems and Robotics

Useful ROS facilities

• SMACH framework: FSM executor fully integrated into ROS
Ingredients: states, transitions, and outcomes

Institute for Systems and Robotics

Useful ROS facilities

• SMACH framework:

– Types of states:
MonitorState -- subscribes to topic, waits while condition True
ConditionState -- polls a callback function, waits until True
SimpleActionState -- calls actionlib action
and can be a container

– Types of containers:
StateMachine -- finite state machine
Concurrence -- all states run in parallel (split/join logic)
Sequence -- StateMachine with linear sequence of states

Institute for Systems and Robotics

Useful ROS facilities

• More off-the-shelf packages:
– Gmapping: creates occgrid maps from laser data
– Cartographer: creates maps in 2D or 3D
– AMCL: localizes on occgrid maps using laser data
– Move_base: path planning and guidance with obstacle

avoidance using laser data
– MoveIt: trajectory planner for robotic arms
– Octomap: creates 3D occupancy maps using RGB-D
– ROSPlan: integrates classical planner into ROS
– ...

