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1 Introduction

This chapter investigates the utility of particle filters in the context of mobile
robotics. In particular, we report results of applying particle filters to the
problem of mobile robot localization, which is the problem of estimating a
robot’s pose relative to a map of its environment. The localization problem is
a key problem in mobile robotics, as it plays a fundamental role in various suc-
cessful mobile robot systems; see e.g., (Cox and Wilfong 1990, Fukuda et al.
1993, Hinkel and Knieriemen 1988, Leonard et al. 1992, Rencken 1993, Sim-
mons et al. 1997, Weif} et al. 1994) and various chapters in (Borenstein et al.
1996) and (Kortenkamp et al. 1998). Occasionally, it has been referred to as
“the most fundamental problem to providing a mobile robot with autonomous
capabilities” (Cox 1991).

The mobile robot localization problem comes in different flavors. The sim-
plest localization problem-—which has received by far the most attention in
the literature—is position tracking. Here the initial robot pose is known, and
localization seeks to correct small, incremental errors in a robot’s odometry.
More challenging is the global localization problem, where a robot is not told
its initial pose, but instead has to determine it from scratch. The global
localization problem is more difficult, since the robot’s localization error can
be arbitrarily large. Even more difficult is the kidnapped robot problem (En-
gelson and McDermott 1992), in which a well-localized robot is teleported to
some other position without being told. This problem differs from the global
localization problem in that the robot might firmly believe to be somewhere
else at the time of the kidnapping. The kidnapped robot problem is often
used to test a robot’s ability to recover autonomously from catastrophic local-
ization failures. Finally, there also exists the multi-robot localization problem,
in which a team of robots seeks to localize themselves. The multi-robot local-
ization problem is particularly interesting if robots are able to perceive each
other, which introduces non-trivial statistical dependencies in the individual
robots’ estimates.

The beauty of particle filters is that they provide solutions to all of the
problems above. Even the most straightforward implementation of particle
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filters exhibits excellent results for the position tracking and the global lo-
calization problem. Extensions of the basic algorithm have led to excellent
results on the kidnapped robot and the multi-robot localization problem.

The power of particle filters relative to these problems stems from mul-
tiple aspects: in contrast to the widely used Kalman filters, particle filters
can approximate a large range of probability distributions, not just normal
distributions. Once a robot’s belief is focused on a subspace of the space of
all poses, particle filters are computationally efficient, since they focus their
resources on regions in state space with high likelihood. Particle filters are
also easily implemented as any-time filters (Dean and Boddy 1988, Zilberstein
and Russell 1995), by dynamically adapting the number of samples based on
the available computational resources. Finally, particle filters for localization
are remarkably easy to implement, which also contributes to their popularity.

This article describes a family of methods, known as Monte Carlo localiza-
tion (MCL) (Dellaert at al. 1999b, Fox et al. 1999b). The MCL algorithm is
a particle filter combined with probabilistic models of robot perception and
motion. Building on this, we will describe a variation of MCL which uses
a different proposal distribution (a mixture distribution) that facilitates fast
recovery from global localization failures. As we will see, this proposal dis-
tribution has a range of advantages over that used in standard MCL, but
it comes at the price that it is more difficult to implement, and it requires
an algorithm for sampling poses from sensor measurements, which might be
difficult to obtain. Finally, we will present an extension of MCL to cooper-
ative multi-robot localization of robots that can perceive each other during
localization. All these approaches have been tested thoroughly in practice.
Experimental results are provided to demonstrate their relative strengths and
weaknesses in practical robot applications.

2 Monte Carlo Localization

2.1 Bayes Filtering

Particle filters have already been discussed in the introductory chapters of
this book. For the sake of consistency, let us briefly derive the basics, be-
ginning with Bayes filters. Bayes filters address the problem of estimating
the state x of a dynamical system from sensor measurements. For example,
in mobile robot localization the dynamical system is a mobile robot and its
environment, the state is the robot’s pose therein (often specified by a posi-
tion in a two-dimensional Cartesian space and the robot’s heading direction
6), and measurements may include range measurements, camera images, and
odometry readings. Bayes filters assume that the environment is Markov,
that is, past and future data are (conditionally) independent if one knows the
current state.
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The key idea of Bayes filtering is to estimate the posterior probability
density over the state space conditioned on the data. In the robotics and
AT literature, this posterior is typically called the belief. Throughout this
chapter, we will use the following notation:

Bel(zy) = play| do..t)

Here x denotes the state, x; is the state at time ¢, and dqy. ; denotes the data
starting at time 0 up to time ¢. For mobile robots, we distinguish two types of
data: perceptual data such as laser range measurements, and odometry data or
controls, which carries information about robot motion. Denoting the former
by y and the latter by u, we have

Bel(x;) = p(xe | Yo, w1, o1, U2 - - -, Yoy Yo) (2.1)

Without loss of generality, we assume that observations and actions occur in
an alternating sequence. Note that the most recent perception in Bel(x) is
Yy, whereas the most recent controls/odometry reading is wu;_;.

Bayes filters estimate the belief recursively. The initial belief character-
izes the initial knowledge about the system state. In the absence of such
knowledge (e.g., global localization), it is typically initialized by a uniform
distribution over the state space.

To derive a recursive update equation, we observe that Expression (2.1)
can be transformed by Bayes rule to

p(yt | Lyy Up—15 - - '7y0) p(l’t | Ut—1y - - -7y0)
p(yt | ut—lv"'vyo)

Bel(z;) =

p(yt | Ly Up—15- -« yO) p(l’t | Ut—19 .+, yO)
p(yt | ut—lde...t—l)

(2.2)

The Markov assumption states that measurements y; are conditionally inde-
pendent of past measurements and odometry readings given knowledge of the
state z;:

p(ye | 2o, wimrs o y0) = plys | 2¢)
This allows us to conveniently simplify Equation (2.2):

e | w¢) ple | wea, ..., 40)
p(yt | ut—lde...t—l)

Bel(z;) = il

To obtain our final recursive form, we now have to integrate out the pose z;_;
at time ¢ — 1, which yields

plye | @
= p(yt | Ettt—hégo)...t—ﬁ / p(l‘t | Ti1, U1, '7y0) p(l't—l | U1, .- ,yo) dr_y
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The Markov assumption also implies that given knowledge of x;,_; and wu;_q,

the state x; is conditionally independent of past measurements vy ..., y;_1
and odometry readings uy ..., u;_o up to time ¢ — 2, that is:
p(l‘t | Ti—1, U1y - - 7y0) = p(:)ct | xt—lvut—l)

Using the definition of the belief Bel, we obtain a recursive estimator known
as Bayes filter:

X
Bel(z,) = o0y |piyt| dt) )/ play | @1, uir) Bel(xi—q) daiq
t t—19 &0, t—1
= 0 plye | oe) [ plaee] 2, u) Bel(e) de (2.3)

where 7 is a normalizing constant. This equation is of central importance, as
it is the basis for various MCL algorithms studied here.

2.2 Models of Robot Motion and Perception

In the context of mobile robot localization, Bayes filters are also known as
Markov localization (Burgard, Fox, Hennig and Schmidt 1996, Fox at al.
1999a, Kaelbling et al. 1996, Koenig and Simmons 1996, Nourbakhsh et al.
1995, Simmons and Koenig 1995, Thrun 1998). To implement Markov lo-
calization, one needs to know three distributions: the initial belief Bel(xg)
(e.g., uniform), the next state probability p(x; | xi—1,us—1) (called the motion
model), and the perceptual likelihood p(y: | ;) (called the perceptual model).
The specific shape of these probabilities depends on the robot’s odometry,
and the type of sensors used for localization. Both of these models are time-
invariant; we will henceforth omit the time index t.

A specific motion model (for an RWI B21 robot) is shown in Figure 1.
This figure shows the probabilistic outcome of two example motion commands
indicated by the lines. The grey-scale corresponds to p(a’ | @, a), projected
into 2D. This specific model is the result of convolving conventional robot
kinematics with two independent zero-mean random variables, one of which
models noise in rotation, and one models translational noise. The model is
easily coded in 20 lines of C code.

The perceptual model p(y | x) depends on the specific sensor. If y are
raw camera images, computing p(y | ©) is related to the computer graphics
problem in that the appearance of an image y at pose = has to be predicted.
However, p(y | @) is considerably simpler if one uses range finders for per-
ception. Such sensors measure the distance of the robot to nearby obstacles,
using sound or structured laser light. Figure 2 illustrates the model of robot
perception for a planar 2D laser range finder, which is commonly used in mo-
bile robotics. Figure 2a shows a laser scan and a map. The specific density
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Figure 1: The density p(y | z) after moving 40 meters (left diagram) and 80
meters (right diagram). The darker a pose, the more likely it is.

p(y | @) is computed in two stages. First, the measurement in an ideal, noise-
free environment is computed. For laser range finders, this is easily done
using ray-tracing in a geometric map of the environment, such as the one
shown in Figure 2a. Second, the desired density p(y | ) is obtained as a mix-
ture of random variables, composed of one that models the event of getting
the correct reading (convolved with small Gaussian-distributed measurement
noise), one for receiving a max-range reading (which occurs frequently), and
one that models random noise and is exponentially distributed. Figure 2b
shows a picture of p(y | «), and Figure 2c plots p(y | «) for the specific sensor
scan y shown in Figure 2a.

2.3 Implementation as Particle Filters

If the state space is continuous, as is the case in mobile robot localiza-
tion, implementing the belief update equation (2.3) is not a trivial matter—
particularly if one is concerned about efficiency. The idea of MCL (and other
particle filter algorithms) is to represent the belief Bel(z) by a set of m
weighted samples distributed according to Bel(x):

Bel(z) = {:L’(i), p(i)}izl,...,m

Here each () is a sample (a state), and pl) are non-negative numerical factors
called importance factors, which sum up to one. As the name suggests, the
importance factors determine the weight (=importance) of each sample.

In global mobile robot localization, the initial belief is a set of poses drawn
according to a uniform distribution over the robot’s universe, annotated by

the uniform importance factor %

The recursive update is realized in three steps, computing the expression
in (2.3) from the right to the left.

(1)

1. Sample a state a;_; from Bel(x;—1), by drawing a random x;”; from the
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(a) laser scan and map

(b) sensor model p(y | )
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Figure 2: (a) Laser range scan, projected into a map. (b) The density p(y | ).
(c) p(y | @) for the scan shown in (a). Based on a single sensor scan, the robot
assigns high likelihood for being somewhere in the main corridor.
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sample set representing Bel(x,—1) according to the (discrete) distribu-

tion defined through the importance factors pgi_)l.

(1)

2. Use the sample l’ti_l and the action u;_; to sample :L'Ej) from the distri-

bution p(x; | #1-1,us—1). The predictive density of J}E]) is now given by
the product p(as | 41, ui—1)Bel(xi—1).

3. Finally, weight the sample :L'Ej) by the (non-normalized) importance fac-
tor p(y: | :L'EL])), the likelihood of the sample J}E]) given the measurement

Yi.

After the generation of m samples, the new importance factors are normal-
ized so that they sum up to 1 (hence define a probability distribution). The
reader should quickly see that this procedure in fact implements (2.3), us-
ing an (approximate) sample-based representation. Obviously, our algorithm
constitutes just one possible implementation of the particle filtering idea;
other sampling schemes exist that further reduce variance (Kitagawa 1996).
Detailed convergence results can be found in Chapters 2 and 3 of this book.

Further below, it will be convenient to notice that in this version of MCL,
the proposal distribution for approximating Bel(x;) via importance sampling
is given by

q = play | xio1,uer)Bel(xq) (2.4)
which is used to approximate the desired posterior

plye | @) play | wi—y, 24-1) Bel(xi—1)
p(yt | do...t—1,ut—1)

(2.5)

Consequently, the importance factors are given by the quotient

-1 p(yt | flit) p(l't | ut—lvxt—l) Bel(flft—1)
p(yt | do...t—1,ut—1)

o< plye | @) (2.6)

[P(l't | 241, Ut—1)B€l(l‘t—1)]

2.4 Robot Results

MCL has been at the core of our robot navigation software. It is more efficient
and accurate than any of our previous algorithms. We thoroughly tested MCL
in a range of real-world environments, applying it to at least three different
types of sensors (cameras, sonar, and laser proximity data). Our experiments
have been carried out using several B21, B18 Pioneer, Scout, and XR4000
robots, two of which are shown in Figure 3. These robots were equipped with
arrays of sonar sensors (from 7 to 24), one or two laser range finders, and in
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Figure 3: Two of the robots used for testing: RHINO (left) and MINERVA
(center and right), which successfully guided thousands of people through crowded
museums.

the case of Minerva, the robot shown in center and right of Figure 3, a B/W
camera pointed at the ceiling.

A typical example of MCL is shown in Figure 4. This example illustrates
MCL in the context of localizing a mobile robot globally in an office environ-
ment. This robot is equipped with sonar range finders, and it is also given a
map of the environment. In Figure 4a, the robot is globally uncertain; hence
the samples are spread uniformly trough the free-space (projected into 2D).
Figure 4b shows the sample set after approximately 1 meter of robot motion,
at which point MCL has disambiguated the robot’s position up to a single
symmetry. Finally, after another 2 meters of robot motion the ambiguity is
resolved, and the robot knows where it is. The majority of samples is now
centered tightly around the correct position, as shown in Figure 4c.

2.5 Comparison to Grid-Based Localization

To elucidate the advantage of particle filters over alternative representations,
we are particularly interested in grid-based representations, which are at the
core of an alternative family of Markov localization algorithms (Fox et al.
1998). The algorithm described in (Fox et al. 1998) relies on a fine-grained
grid approximation of the belief Bel(), using otherwise identical sensor and
motion models. Figure 5 plots the localization accuracy for grid-based local-
ization as a function of the grid resolution. Note that the results in Figure 5
were not generated in real-time. As shown there, the accuracy increases with
the resolution of the grid, both for sonar (solid line) and for laser data (dashed
line). However, grid sizes beyond 8 cm do not permit updating in real-time,
even when highly efficient, selective update schemes are used (Fox et al. 1998).
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Figure 4: Global localization of a mobile robot using MCL (10,000 samples).
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Figure 5: Accuracy of grid-based Markov localization using different spatial res-
olutions.

Results for MCL with fixed sample set sizes are shown in Figure 6. These
results have been generated using real-time conditions, where large sample
sizes (> 1,000 samples) result in loss of sensor data due to time constraints.
Here very small sample sets are disadvantageous, since they infer too large
an error in the approximation. Large sample sets are also disadvantageous,
since processing them requires too much time and fewer sensor items can be
processed in real-time. The “optimal” sample set size, according to Figure 6,
is somewhere between 1,000 and 5,000 samples. Grid-based localization, to
reach the same level of accuracy, has to use grids with 4cm resolution—which
is infeasible given even our fastest computers we currently have.

In comparison, the grid-based approach, with a resolution of 20 cm, re-
quires almost exactly ten times as much memory when compared to MCL
with 5,000 samples. During global localization, integrating a single sensor
scan requires up to 120 seconds using the grid-based approach, whereas MCL
consumes consistently less than 3 seconds under otherwise equal conditions.
This illustrates that particle filters are clearly superior over grid-based rep-
resentations, which previously was among the best known algorithms for the
global localization problem.

Similar results were obtained using a camera as the primary sensor for lo-
calization (Dellaert et al. 1999a). To test MCL under extreme circumstances,
we evaluated it using data collected in a populated museum. During a two-
week exhibition, our robot Minerva (Figure 3) was employed as a tour-guide
in the Smithsonian’s Museum of Natural History, during which it traversed
more than 44km (Thrun et al. 1999). To aid localization, Minerva is equipped
with a camera pointed towards the ceiling. Using this camera, the brightness
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Figure 6: Accuracy of MCL for different numbers of samples (log scale).

of a small patch of the ceiling directly above the robot is measured, and com-
pared to a large-scale mosaic of the museum’s ceiling obtained beforehand
(Dellaert et al. 1999¢), shown in Figure 7. This constitutes the likelihood
model. The data used here is among the most difficult data sets in our pos-
session, as the robot traveled with speeds of up to 163 em/sec. Whenever
it entered or left the carpeted area in the center of the museum, it crosses a
2cm bump which introduced significant errors in the robot’s odometry.

When only using vision information, grid-based localization fatally failed
to track the robot. This is because the enormous computational overhead
makes it impossible to incorporate sufficiently many images. MCL, however,
succeeded in globally localizing the robot, and tracking the robot’s position.
Figure 8 shows an example of global localization with MCL. In the beginning
the robot starts with 2,000 uniformly distributed samples representing the
absolute uncertainty about the robots position. After incorporating 15 images
(first diagram), the samples are still scattered over the whole area but already
started to concentrate on several locations. After incorporating 38 images,
most of the ambiguities are resolved and the samples are concentrated on
a small number of peaks (second diagram). Finally, after 126 iterations, the
robot is highly certain about its position (third diagram), which is represented
by a concentration of the samples of the true location of the robot.
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Figure 7: Ceiling map of the National Museum of American History, which was
used as the perceptual model in navigating with a vision sensor.

3 MCL with Mixture Proposal Distributions

3.1 The Need For Better Sampling

As noticed by several authors (Doucet 1998, Lenser and Veloso 2000, Liu and
Chen 1998, Pitt and Shephard 1999), the basic particle filter performs poorly
if the proposal distribution, which is used to generate samples, places too
little samples in regions where the desired posterior Bel(x;) is large.

This problem has indeed great practical importance in the context of MCL,
as the following example illustrates. The solid curve in Figure 9 shows the
accuracy MCL achieves after 100 steps, using m = 1,000 samples. These
results were obtained in simulation, enabling us to vary the amount of per-
ceptual noise from 50% (on the right) to 1% (on the left); in particular, we
simulated a mobile robot localizing an object in 3D space from mono-camera
imagery. It appears that MCL works best for 10% to 20% perceptual noise.
The degradation of performance towards the right, when there is high noise,
barely surprises. The less accurate a sensor, the larger an error one should
expect. However, MCL also performs poorly when the noise level is too small.
In other words, MCL with accurate sensors may perform worse than MCL
with inaccurate sensors. This finding is a bit counter-intuitive in that it sug-
gests that MCL only works well in specific situations, namely those where
the sensors possess the “right” amount of noise.

At first glance, one might attempt to fix the problem by using a perceptual
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Figure 8: Global localization of a mobile robot using a camera pointed at the
ceiling.
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Figure 9: Solid curve: error of MCL after 100 steps, as a function of the sensor
noise. 95% confidence intervals are indicated by the bars. Note that this function
is not monotonic, as one might expect. Dashed curve: Same experiment with
high-error model.

likelihood p(y; | ;) that overestimates the sensor noise. In fact, such a
strategy partially alleviates the problem: The dashed curve in Figure 9b
shows the accuracy if the error model assumes a fixed 10% noise (shown
there only for smaller “true” error rates). While the performance is better,
this is hardly a principled way of fixing the problem. The overly pessimistic
sensor model is inaccurate, throwing away precious information in the sensor
readings. In fact, the resulting belief is not any longer a posterior, even if
infinitely many samples were used. As we will see below, a mathematically
sound method exists that produces much better results.

To analyze the problem more thoroughly, we first notice that the true
goal of Bayes filtering is to calculate the product distribution specified in
Equation (2.5). Thus, the optimal proposal distribution would be this product
distribution. However, sampling from this distribution directly is too difficult.
As noticed above, MCL samples instead from the proposal distribution ¢
defined in Equation (2.4), and uses the importance factors (2.6) to account
for the difference. It is well-known from the statistical literature (Doucet
1998, Pitt and Shephard 1999, Liu and Chen 1998, Tanner 1993) that the
divergence between (2.5) and (2.4) determines the convergence speed. This
difference is accounted by the perceptual density p(y; | x;): If the sensors
are entirely uninformative, this distribution is flat and (2.5) equals (2.4).
For low-noise sensors, however, p(y; | x;) is typically quite narrow, hence
MCL converges slowly. Thus, the error in Figure 9 is in fact caused by two
different types of errors: one arising from the limitation of the sensor data
(=noise), and one that arises from the mismatch of (2.5) and (2.4) in MCL.
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This suggests to use different proposal distributions for sampling that can
accommodate highly accurate sensors.

3.2 An Alternative Proposal Distribution

To alleviate this problem, one can use a different proposal distribution, one
that samples according to the most recent sensor measurement y; (see also (Lenser
and Veloso 2000, Thrun et al. 2000)). The key idea is to sample x; directly
from a distribution that is proportional to the perceptual likelihood p(y; | a+):

o plys | %) . _
qg = W with  7w(y) = /p(yt | 2¢) day (3.1)

This new proposal distribution possesses orthogonal limitations from the one
described above, in that it generates samples that are highly consistent with
the most recent sensor measurement but ignorant of the belief Bel(x;_;) and
the control w;_y.

The importance factors for these samples can be calculated in three ways.
Recall that our goal is to sample from the product distribution

p(yt | flft) p(l't | Ut—hl’t—l) Bel(flft—1) p(yt | flit) p(l't | dO...t—laut—l)

= 3.2
p(yt | dO...t—lvut—l) p(yt | dO...t—lvut—l) ' )

Approach 1 (proposed by Arnaud Doucet, personal communication): The
(1) (1) (4)

idea is to draw random pairs (x;"’, 2;”,) by sampling ;' as described above,

and :L'Ef_)l by drawing from Bel(x;_1). Obviously, the combined proposal dis-

tribution is then given by

p(yt | fl?gz))
m(y:)

and hence the importance factors are given by the quotient

x Bel(z!),) (3.3)

) = plye |2 pel) [wiy,2)) Bel(2l))

p(yt | do..1—1, Ut—1)

p(yt | fl?gz))

x Bel x(i_)
() (=

p(l’gi) | Ut—lal’gi—)ﬁ m(y:)
p(yt | do...t—1,ut—1)

o plal [y, 2l)) (3.4)

This approach is mathematically more elegant than the two alternatives de-

scribed below, in that it avoids the need to transform sample sets into densities

(which will be the case below). We have not yet implemented this approach,

hence are unable to comment on how well it works in practice. However, in

the Conte>(<t of globa(l})mobile robot localization, we suspect( ')the( ;mportance
K3 K3 K3 >‘

factor p(:z;ti) | w1, 2,24 ) will be zero for many pose pairs (a3, x;
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Approach 2 An alternative approach uses forward sampling and kd-trees
to generate an approximate density of p(x; | do.s—1,us—1). This density is
then used in a second phase to calculate the desired importance factor. More
specifically, Equations (3.1) and (3.2) suggest that the importance factors of

7 .
a sample x;’ can be written as

DN (i) M) 4
p(yt | Ly ) p(yt | Ty )p(l't | 0...t—17ut—1)
m(y:) P(ye | do..4—1,us-1)

o p(l'gi) | do..i—1,us—1) (3.5)

Computing these importance factors is not trivial, since Bel(x:_1) is rep-
resented by a set of samples. The “trick” here is to employ a two-staged
approach, which first approximates p(x; | do.i—1,us—1) and then uses this
approximate density to calculate the desired importance factors.

The following algorithm implements this alternative importance sampler:

(7)

1. Generate a set of samples z;*’, by first sampling from Bel(xﬁi)l) and

(7)

then sampling from p(:zjgj) | w1, ;7)) as described above. Obviously,

these samples approximate p(:zjgj) | do..t—1,Us—1).

2. Transform the resulting sample set into a kd-tree (Bentley 1980, Moore
1990). The tree generalizes samples to arbitrary poses :L'Ej) in pose space,
which is necessary to calculate the desired importance factors.

3. Finally, sample :z;,(f) from our proposal distribution %ﬁ;)). Weight
each such sample by an importance factor that is proportional to its
probability under the previously generated density tree.

This approach avoids the danger of generating pairs of poses <:1;,Ei), :L'ELZ_)1> with
( (4)

zero probability under p(:z;ti) | wi—1,2;2,). However, it involves an explicit
forward sampling phase.

Approach 3 The third approach combines the best of both worlds, in that
it avoids the explicit forward-sampling phase of the second approach, but
also generates importance factors that are large. In particular, this approach
transforms the initial belief Bel(x;—1) into a kd-tree. It then generates sam-
ples :L'ELZ) according to

ply: | @) (3.6)

7 (ye)
For each such sample xﬁ”, it generates a sample :L'Ef_)l according to
p(l'gl) | w1, 741)

W(xgi) =y

(3.7)
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where

W(xgi) | uiy) = /p(:z;gi) | w1, @im1) dyq (3.8)

(0) (9

Fach of these combined samples (a;”, ;) is, thus, sampled from the joint
distribution

p(y: | xg‘l)) y p(l’gi) | Ut—hl‘,(gi_)l)

7 (Ye) W(xgi) | ws—q) (3.9

The importance factor is calculated as follows:

R R R -1 R R R R
el @) plat? ueraiy) | plye | of?) plat” | a2y wey) Bel(ai?y)

m(y:) W(xgi) | w—1) p(ys | do..i-1)
(1) W(xgi) | wiey) Bel(:z;f_) )
p(yt | do...t—1)
o W(xgi) =y Bel(:z;y_) ) (3.10)

where Bel(:zjgi_)l) is calculated using the kd-tree representing this belief density.

The only complication arises from the need to calculate W(xgi) | 1), which
depends on both :z;,(f) and u;_;. Luckily, in mobile robot localization, W(xgi) |
u;—1) can safely be assumed to be a constant—even though this assumption
is not valid in general. This leads to the following Monte Carlo algorithm:

(1)

1. Sample a pose x;’ from a proposal distribution that is proportional to

P(yt | fl?t)-
(@)

2. For this xﬁ”, sample a pose z;”, from a distribution that is proportional
to P(:chl) | w1, Teo1).

3. Set the importance factor to a value proportional to the posterior prob-
ability of :L'Ef_)l under the density tree that represents Bel(x,_1).

3.3 The Mixture Proposal Distribution

Neither proposal distribution alone—the original distribution ¢ described in
(2.4) and the alternative distribution ¢ given in (3.1)—is satisfactory. The
original MCL proposal distribution fails if the perceptual likelihood is too
peaked. The alternative proposal distribution, however, only considers the
most recent sensor measurement, hence is prone to failure when the sensors
err.
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Figure 10: Error of MCIL with mixture proposal distribution as a function of the
sensor noise. Compare this curve with Figure 9.

A mixture of both proposal distributions gives excellent results:

(1-¢)g + oq (3.11)

Here ¢ (with 0 < ¢ < 1) denotes the mizing ratio between regular and
dual MCL. Figure 10 shows performance results of MCL using this mixture
proposal distribution, using a fixed mixing ratio ¢ = 0.1. All data points
are averaged over 1,000 independent experiments. Comparison with Figure 9
suggests that this proposal distribution is uniformly superior to regular MCL,
and in certain cases reduces the error by more than an order of magnitude.

These results have been obtained with the third method for calculating
importance factors described in the previous section. In our simulation ex-
periments, we found that the second approach yields slightly worse results,
but the difference was not significant at the 95% confidence level. As noted
above, we have not yet implemented the first approach. In our robot results
below, we use the second method for calculating importance factors.

3.4 Robot Results

A series of experiments was conducted, carried out both in simulation and
using physical robot hardware, to elucidate the difference between MCL with
the standard and the mixture proposal distribution. We found that the mod-
ified proposal distribution scales much better to small sample set sizes than
conventional MCL. Figure 11 plots the error of both MCL algorithms for dif-
ferent error levels, using m = 50 samples only. With 50 samples, the compu-
tational load is 0.126% on a 500MHz Pentium Computer-—meaning that the
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Figure 11: Error of MCL (top curve) and hybrid MCL (bottom curve) with 50
samples (instead of 1,000) for each belief state.

algorithm is approximately 800 times faster than real-time. While MCL with
the standard proposal distribution basically fails under this circumstances
to track the robot’s position, our extended approach gives excellent results,
which are only slightly inferior to those obtained with 1,000 sample.

The following experiment evaluates MCL with mixture proposal distribu-
tion in the context of the kidnapped robot problem. This MCL algorithm
addresses the issue of recovery from a kidnapping, in that it generates sam-
ples that are consistent with momentary sensor readings. Our approach was
tested using laser range data recorded during the two-week deployment of the
robot Minerva. Figure 12 shows part of the map of the museum and the path
of the robot used for this experiment. To enforce the kidnapped robot prob-
lem, we repeatedly introduced errors into the odometry information. These
errors made the robot lose track of its position with probability of 0.01 when
advancing one meter. These errors where synthetic; however, they accurately
modeled the effect of kidnapping a robot to a random location.

Figure 13 shows comparative results for three different approaches. The
error is measured by the percentage of time, during which the estimated posi-
tion deviates more than 2 meters from the reference position. Obviously, using
the mixture proposal distribution yields significantly better results, even if the
basic proposal distribution is mixed with 5% random samples (as suggested
in (Fox et al. 1999b) to alleviate the kidnapped robot problem). The mix-
ture proposal distribution reduces the error rate of localization by as much as
70% more than MCL if the standard proposal distribution is employed; and
32% when compared to the case where the standard proposal distribution is
mixed with a uniform distribution. These results are significant at the 95%
confidence level, evaluated over actual robot data.
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Figure 12: Part of the map of the Smithsonian’s Museum of National History,
and path of the robot.

We also compared MCL with different proposal distributions in the con-
text of visual localization, using only camera imagery obtained with the robot
Minerva during public museum hours. The specific image sequence is of ex-
tremely poor quality, as people often intentionally covered the camera with
their hand and placed dirt on the lens. Figure 14 shows the localization error
obtained when using vision only (calculated using the localization results from
the laser as ground truth). The data covers a period of approximately 4,000
seconds, during which MCL processes a total of 20,740 images. After approx-
imately 630 seconds, a drastic error in the robot’s odometry leads to a loss of
the position (which is an instance of the kidnapped robot problem). As the
two curves in Figure 14 illustrate, the regular MCL sampler (dashed curve)
is unable to recover from this event, whereas MCL with mixture proposal
distribution (solid curve) recovers quickly. These result are not statistically
significant in that only a single run is considered, but they confirm our find-
ings with laser range finders. Together, our result suggest that the mixture
distribution drastically increases the robustness of the statistical estimator
for mobile robot localization.

4 Multi-Robot MCL

4.1 Basic Considerations

The final section of this chapter briefly addresses the multi-robot localization
problem. As mentioned in the introduction, multi-robot localization involves
a team of robots which simultaneously seek to determine their poses in a
known environment. This problem is particularly interesting if robots can
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Figure 13: Performance of MCL with the conventional (top curve) and mixture
proposal distribution (bottom curve), evaluated for the kidnapped robot problem
in the Smithsonian museum. The middle curve reflects the performance of MCL
with a small number of random samples added in the resampling step, as suggested
in (Fox et al. 2000) as a means to recover from localization failures. The error rate
is measured in percentage of time during which the robot lost track of its position.

sense each other during localization. The ability to detect each other can
significantly speed up learning; however, it also creates dependencies in the
pose estimates of individual robots that pose major challenges for the design
of the estimator.

Formally speaking, the multi-robot localization problem is the problem of
estimating a posterior density over a product space X = @Y, X', where X!
describes the position of the ¢-th robot. Every time a robot senses, it obtains
information about the relative poses of all other robots, either by detecting
nearby robots, or by not detecting them, which also provides information
about other robots’ poses. Let 7’ denote the random variable that models
the detection of robot j by robot i at time ¢ (¢ # j). Thus, the variable
rid either takes the value not detected or it contains a relative distance and
bearing of robot j relative to robot . The multi-robot localization problem,
thus, extends the single robot localization problem by additional observations
ry’; which are modeled using a time-invariant sensor model p(z' | r, /)
(time index omitted as above).

The first and most important thing to notice is that the multi-robot lo-
calization problem is very hard, and in fact, we only know of a rudimentary
solution which, while exhibiting reasonable performance in practice, possesses
clear limitations. What makes this problem hard is the fact that the random
variables i/ introduce dependencies in the robots’ beliefs. Thus, ideally one
would like to estimate the posterior over the joint distribution X = @, X

However, such calculations cannot be carried out locally (a desirable prop-



Particle Filters for Mobile Robot Localization 491

#500 """ StandardMCL -
4000 Mixture MCL ———
3500 -
3000 -
2500 [+ ‘ -
2000 f ” |
1500 ft
1000 |

500 k

Distance [cm]

0 500 1000 1500 2000 2500 3000 3500 4000
Time [sec]

Figure 14: MCL with the standard proposal distribution (dashed curve) compared
to MCL with the new mixture distribution (solid line). Shown here is the error for
a 4,000-second episode of camera-based localization in the Smithsonian museum.

erty of autonomous robots) and, more importantly, the size of X increases
exponentially with the number of robots N. The latter is not much of a prob-
lem if all robots are well-localized; however, during global localization large
subspaces of X would have to be populated with samples, rendering particle
filters hopefully inefficient for this difficult problem.

Our approach basically ignores these non-trivial interdependencies and in-
stead represents the belief at time ¢ by the product of its marginals

Bel(xy) HBel (4.1)

Thus, our representation effectively makes a (false) independence assumption—
see (Boyen and Koller 1998) for an idea how to overcome this independence as-
sumption while still avoiding the exponential death of the full product space.
When a robot detects another robot, the observation is folded into a robot’s
current belief, and the result is used to update the belief of the other robots.

More specifically, suppose robot i detects robot j at time ¢. Then j’s belief
is updated according to

Bel(al) = [plal | wl_yri2)) BellaiLy) daisy Bel(el,)  (4.2)

The derivation of this formula is analogous to the derivation of Bayes filters
above and can be found in (Fox et al. 2000). By symmetry, the same detection
is be used to constrain the i-th robot’s position based on the belief of the j-the
robot.
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Figure 15: Sample set representing a robot’s belief.

Clearly, our update rule assumes independence. Hence, when applied more
than once it can lead to repetitive use of the same evidence, which will make
our robots more confident than warranted by the data. Unfortunately, we
are not aware of a good “fix” to this problem that would maintain the same
computational efficiency as our approach. To reduce this effect, our current
algorithm only processes positive sightings, that is, the event of not seeing
another robot has no effect. Additionally, repetitive sightings in short time
intervals are ignored. Nevertheless, the occasional transfer from one robot to
another can have a substantial effect on each robot’s ability to localize.

The implementation of the multi-robot localization algorithm as a dis-
tributed particle filter requires some thought. This is because under our fac-
torial representation, each robot maintains its own, local sample set. When
one robot detects another, both sample sets have to be synchronized accord-
ing to Equation (4.2). Note that this equation requires the multiplication of
two densities which means that we have to establish a correspondence be-
tween the individual samples of robot j and the density representing robot
’s belief about the position of robot j. However, both of these densities
are themselves represented by sample sets, and with probability one no two
samples in these sets are the same. To solve this problem, our approach
transforms sample sets into density functions using density trees (Koller and
Fratkina 1998, Moore et al. 1997, Omohundro 1991). Density trees are con-
tinuations of sample sets which approximate the underlying density using a
variable-resolution piecewise constant density.

Figure 16 shows such a tree, which corresponds to a robot’s estimate of
another robot’s location. Together with Figure 15, it shows a map of our
testing environment along with a sample set obtained during global localiza-
tion. The resolution of the tree is a function of the densities of the samples:
the more samples exist in a region of space, the more fine-grained the tree
representation. The tree enables us to integrate the detection into the sam-
ple set of the detected robot using importance sampling for each individual
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Figure 16: Tree representation extracted from the sample set.

sample (x,w):

w o a [plel|oiiriny) Bel(aly) oy (4.3)

4.2 Robot Results

Multi-Robot MCL has been tested using two RWI Pioneer robots, equipped
with a camera and a laser range finder for detection (see (Fox et al. 2000)
for details). In particular, our implementation detects robots visually, and
uses a laser range finder to determine the relative distance and bearing. The
perceptual models p(z’ | r®/ z7) were estimated from data collected in a
separate training phase, where the exact location of each robot was known.
After training, the mean error of the distance estimation was 48.26 cm, and
the mean angular error was 2.2 degree. Additionally, there was a 6.9% chance
of erroneously detecting a robot (false positive).

Figure 17 plots the localization error as a function of time, averaged over
ten experiments involving physical robots in the environment shown in Fig-
ure 15. The ability of the robots to detect each other clearly reduces the
time required for global localization. Obviously, the overuse of evidence,
while theoretically present, appears not to harm the robots’ ability to local-
ize themselves. We attribute this finding to the fact that our multi-robot
MCL is highly selective when incorporating relative information. These find-
ings were confirmed in systematic simulation experiments (Fox et al. 2000)
involving larger groups of robots in a range of different environments.

5 Conclusion

This chapter has surveyed a family of particle filters for mobile robot localiza-
tion, commonly known as Monte Carlo localization (MCL). MCL algorithms
provide efficient and robust solutions for a range of mobile robot localization
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Figure 17: Empirical results comparing single robot MCL and multi robot MCL.

problems, such as position tracking, global localization, robot kidnapping,
and multi-robot localization.

This chapter investigated three variants of the basic algorithm: The basic
MCL algorithm, which has been applied with great success to global localiza-
tion and tracking, followed by an extension that uses a more sensible proposal
distribution, which overcomes certain limitations of MCL such as poor per-
formance when sensors are too accurate, and suboptimal recovery from robot
kidnapping. Finally, the paper proposed an extension to multi-robot localiza-
tion, where a distributed factorial representation was employed to estimate
the joint posterior.

For all these algorithms, we obtained favorable results in practice. In
fact, an elaborate experimental comparison with our previous best method, a
version of Markov localization that uses fine-grained grid representations (Fox
at al. 1999a), showed that MCL is an order of magnitude more efficient and
accurate than the grid-based approach.

The derivation of all these algorithms is based on a collection of indepen-
dence assumptions, ranging from a static world assumption to the assumption
that the joint belief space of multiple robots can be factorized into indepen-
dent components that are updated locally on each robot. Clearly, in most ap-
plication domains all of these independence assumptions are violated. Robot
environments, for example, are rarely static. Relaxing those assumptions is
a key goal of current research, with enormous potential benefits for robot
practitioners.
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