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* Definition of Markov Chain (MC) and relation to DES.

* Discrete Time MCs * Continuous Time MCs
* the transition probability matrix e the transition rate matrix
* homogeneous MCs * homogeneous MCs
* state holding times * transition probabilities
* state probabilities * state probabilities
* transient analysis * transient analysis
* classification of states * steady-state analysis

* steady-state analysis
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el e Def.: A Markov Chain is a discrete state space stochastic process
where the probability of transitions between states has the

following property:
PLX (1) = X | X(6) = %0, X (1) = x5 ] = PLX (8, = X0, [ X(8) = X, ]

Recall that, in a Markov process:

* All past state information is irrelevant (no state memory needed).

* How long the process has been in the current state is irrelevant (no
state age memory needed).

Discrete Time Markov Chains (DTMC

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima Markov Chains



I RELATION WITH DES
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recnico Relation with STA: We will only be concerned with the total
probability of making a transition from state x to state x’,
regardless of which event causes the transition:

p(x'lx)=P[X(t,,)=x"1X(t)=x]= > p(x'l x,i).p(i | x)

i€l'(x)

Therefore, to specify a (CT)MC model, we will only need to identify:
1. Astate space ¢

2. An initial state probability p,(x)=P[X,=x], for all x € %

3. Transition probabilities p(x’,x)

Relation with ETPN: The marking process of an exponential timed
Petri net is a continuous time Markov Chain (CTMC).
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tecnico  Transition probabilities pl-j(k) = P[Xk+1 =] \ Xk = i]
0<p,(k) <1

;p,-j(k)=1

n-step transition probabilities

pylk.k+n)=PLX,, =jlX, =i]

k+n

py(kkn)= ¥ PLX,,, = jIX, =r.X, =0PLX, =r|X, =i k<ushken

Chapman-Kolmogorov Equations
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Chapman-Kolmogorov Equations (Matrix Form)

H(k,k+n)= [pl.].(k,k+n)], i,j=012,..

py(k,k+n)= Zpir(k,u)pr,-(u,km), k<us<k+n > H(k,k +n)=H(k,u)H(u,k +n)

Forward Chapman-Kolmogorov Equation
u=k+n-1 — H(kk+n)=H(k,k+n-1)H(k+n-1,k+n)

Backward Chapman-Kolmogorov Equation

u=k+l — H(kk+n)=Hk k+D)H(k+Lk+n)
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Homogeneous MCs P[X(k+1)=j| X(k)=1i]=constant= p,

The transition probabilities are independent of time k. Note that not all
probabilities involved (e.g., joint probabilities) are time-independent.

p;=PlX,,, =il X, =i], n=12,.

H(k,k +n)=H(n) =[p;], i,j=0,2,.

Setting u = k+m in the CK equation:
CK equation

=Zn~’:’p2m Seh . RGN

=n-1
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Transition Probability Matrix

P=[p,]=H(1), i,j=012,..

CK equation

v

Py = ZPZ P = Zp,-’i'lprj
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State Holding Times (Sojourn Times)
\/(/) Random variable representing the number of consecutive time steps spent at state i

k+n-2 k+n-1 k+n

m - @, @, ®

PIV(i)=n]=PlX, =i, X, =0, X, =0, X,,=i| X, =i]

_ Geometric distribution
with parameter Djj
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I hee State Probabilities
(k) =[x, (k), 7, (K),..]
O<m(k)=1

an(k)ﬂ

If, in addition to the state space x and the transition probability matrix P
the initial state probability vector 7(0) = [J'L’O(O),J'L’l(()),... is specified, the
DTMC is completely specified.

Two types of analysis will be carried out:
* transient analysis
- steady-state analysis
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&l / State Probabilities
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i Transient Analysis

7w (k+1)=PX,, =j]= ZP[an = J| X, =i]PlX, =i] = Zpij‘ﬂ:i(k)

Solution:
| 2002.-© Pedro U. Lima |
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Reachable  jis reachable from i if there is a path fromitoj, i.e.,
if p;" > 0 for some n=1,2,...

A subset S of the state space x is said to be closed
Absorbing if p;=0 for any /€S, j& S.

State 7/ is absorbing if it forms a single-element

closed set (p,=1).

i isabsorbing <« 3, .V, ;w(k)=1

Irreducible A closed set of states S is irreducible if state j is
@/‘\ap reachable from state j for any i,j €S.

05 ‘:) A MC is irreducible if its state space ¥ is irreducible.

Reducible, when there are subsets of the state a/—\

space not reachable from other states (e.g.,
state 1 from 2 in the MC on the right)

absorbing
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Q.: The MC is in state i. Will the chain ever return to state /?

A.:
 definitely yes: state i is recurrent
yy - . first time the chain
* maybe no: state / is transient / enters j, starting in i
Hitting time: T, =mintk >0: X, =i, X, = j|

Recurrence time: Ti mln{k >0: XO = i, Xk = l} T;'z' = 1,2,...,00

pi = PIT; =k]

p; = E,Olk = P [everreturnto i | current state is /] = P [T < ]
k=1
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""" Recurrent state iisrecurrent if p; =1
Transient  stateiistransientif p; <1
Example

0.7 0.9

1,2,6 - recurrent
6 - absorbing

3,4,5 - transient

1,2 is reachable from 1,2,3,4,5 ;
3,4,5 from 3,4,5; 6 from 3,4,5,6

{1,2}, {6} — closed sets
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Theorem 1: If a MC has a finite state space, then at least some state is recurrent.

Theorem 2: If j is a recurrent state and j is reachable from i, then state j is recurrent.

Theorem 3: If S is a finite closed irreducible set of states, then every state in S'is
recurrent.



!ﬁ HOMOGENEOUS DTMC
State Classification
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recnico The mean recurrence time is M, = E[t,]= Y kp;
k=1
Null recurrent If the mean recurrence time is Mj=

Positive recurrent  If the mean recurrence time is M; <«

0.7 0.9

EX.. positive recurrent states 0.5

State 1 E[t,,]= Y ko, =1:0+2-1+3-0+---=2 p, =1
k=1

State 2  E[ty,]= Y ko3 =1-0+2:1+3:0+---=2 p, =1

ksl

State 6  E[t,l= > kpg=11+2:0+3-0+---=1 p, =1
k=1
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State Classification
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TECNICO The mean recurrence timeis M, = E[1,]= > kp;
k=1
Null recurrent If the mean recurrence time is Mj=

Positive recurrent  If the mean recurrence time is M; <«

Ex.: null recurrent states

1/2 1/3 1/4

4.‘_. State 0 is
1 1/2
>, & 11 al *(1 1 . 1
= =)y ——= ) — = ————|=lm|l-—|=1 t
Po= 2P0~ 2 T 2 T e E(k k+1) ( ) recurren
k
0

null recurrent
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HOMOGENEOUS DTMC
State Classification

Transient states may never be revisited

Positive recurrent will definitely be revisited with finite expected
recurrence time

Null recurrent will definitely be revisited but the expected
recurrence time is infinite
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Theorem 4: If j is a positive recurrent state and j is reachable from /, then
state j is positive recurrent.

Theorem 5: If S is a closed irreducible set of states, then every state in

S is positive recurrent or every state in S is null recurrent or every state
in S is transient.

Theorem 6: If S is a finite closed irreducible set of states, then every
state in S is positive recurrent.
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Periodic  State is visited every d steps

Aperiodic  There’s no d such that the state is visited regularly every d steps

Examples:
0.5
0.5
eriodic eriodic .-
P | P aperiodic
d=73 d=2
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states
pi=1
transient recurrent
M; < oo
null recurrent positive recurrent

/ O;'=1

periodic aperiodic
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Steady-State Analysis

Q.: What is the probability of finding a MC at state i in the long run,
i.e., after a period of time long enough so that the state probabilities
have reached fixed values which do not change with time!?

k=0
Issues to be addressed:
* under what conditions do the above limits exist?

« if they exist, do they form a probability distribution, i.e., }I:I'ﬂj=1 ?
allj

* how do we evaluate :rj?
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HOMOGENEOUS DTMC
State Probabilities

Steady-State Analysis
If the limits exist 77 {k+T) = (k) = & = 7P

When the MC is periodic, the limits do not exist.
On the other hand,

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima Markov Chains



!ﬁ HOMOGENEOUS DTMC
State Probabilities
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Recalling Theorem 5

If S is a closed irreducible set of states, then every state in S is positive
recurrent or every state in S is null recurrent or every state in S is

transient.
We get to the following two fundamental Theorems:

Theorem 9: In an irreducible aperiodic MC consisting of null recurrent or of
transient states

k=0

For all states j, and no stationary probability distribution exists.

Theorem 10: In an irreducible aperiodic MC consisting of positive recurrent
states, a unique stationary state probability vector x exists such that 7>0
and i ®) 1
Ti= IImxa = —
J kL>m> J Afj
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State Probabilities
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Técnico |n Theorem 9, I\/Ij is the mean recurrence time

C k
M, = Elt,] = kaj

and the steady state probabilities are determined by solving

7T =P

an:l
allj

From Theorems 6 and 10, every finite irreducible aperiodic MC has a unique stationary
state probability vector determined by solving the above finite system equations. Note that
solving an infinite system of equations is not so simple, though.
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State Probabilities

Urinos  Steady-State Analysis — Reducible MCs
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The chain eventually enters some irreducible closed
set of states S and remains there forever:

« if S consists of 2 or more states, the steady state

behavior of S can be analyzed as in the irreducible MC
case

« if S consists of a single absorbing state, the MC
simply remains in that state

The problem arises when the reducible chain
contains two or more irreducible closed sets of
states
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In this case, the relevant question is: what is the probability that the chain enters a

particular set S first?
Def.: probability that the chain enters set S given that it starts at state

i€ p.(S)=P[X, €S forsomek >0| X, =i]

T is the set of
transient states in a
reducible MC

The solution for the unknown probabilities p(s) for all i € T is not easy, but it has a unique
solution for a finite set t. However, if the set is infinite, the solution may not be unique.
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The Markov (memoryless) property is expressed here as
PLX(t,) =% | X(8) =%, X)) = %] = PLX( ) = X, [ X&) =x, ],

lysl=..s[ <1

The analysis of CTMC parallels that of DTMC. However, the one-
step probability matrix P can no longer be used since state
transitions are no longer synchronized by a common clock.
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Transition functions
py(s,)= PLX (1) = j| X(5) =], s =1
p;(s,1) = ZP[X(t) =J| X(u)=r,X(s) =i} P[X(u) =r|X(s) =1]

Chapman-Kolmogorov Equations
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Chapman-Kolmogorov Equations (Matrix Form)

H(s,t)=[p,(s,0)], i,j=0,2,..
H(s,s)=1

The Transition Rate Matrix

H(s,t+At) =H(s,) ) H(z,t + A1), s=st=t+ At

. H(s,t+Af)-H(s,t) . H(,t+Ar)-1
BE}) At - H(S,t)l}{ll)o At —

Q1)

T

: Transition rate matrix
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Backward Chapman-Kolmogorov Equation

oH(s,?)
ds

=-Q(s)H(s,t), s<s+As=<t

Forward Chapman-Kolmogorov Equation
oH(s,?)
ot

=H(s,1)Q(¢), s=st<t+Af

Solution of the FCK: (under certain conditions that Q must satisfy)

H(s,7) =exp

j Q(t)dr
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e P (8,5 +7)= P[X(s+7) = j| X(s) =i] = p,(7)
H(t) = P(r)=[p,(T)], i,j=0,2,.

;p,-j(r)=1

Note that, for a homogeneous CTMC: H(t t+At) = P(Af),

therefore Q(f) = Q = constant

Solution:
P(7) = exp|Qr J= T+ Qt + Q%2 / 21+...
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NS state Holding Times (Sojourn Times)

V(i) Random variable representing the amount of time spent at state i whenever it
is visited

PV stl=1-e™", 120 00 B
with parameter A(/)

For MC, an event coincides with a state transition, therefore “interevent
times” are identical to “state holding times”.

Defining events e; as events generated by a Poisson process with rate
A; which cause transition from state / to state J:

A= IA,

e; EL(i)
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TESNIC physical Interpretation of the Properties of the Transition Rate Matrix
PC) _pex dp (T)
o o = i _

r#j

- Note that: —(,; = %[1 - pii(T)]

-g; is the instantaneous rate at which a state transition out of / takes place.

= AQ)

7=0

q; is the instantaneous rate at which a state transition from i to j takes place.

T ’ 2=

Differentiating w.r.t. T and setting t=0 all J
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TEsieo Transition Probabiliti
A §
Po=PX, Fj X, =i]= =TT
A(7) —q;

P, =1 = P, =0 (the only defined events fora MC are those causing state transitions)

all j=i

Once Q is specified, a full MC model specification is obtained:

. P,-j determined as above

 the parameters of the exponential state holding time are given by

~Gii= 2 4
j;él
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1Eeloo State Probabilities J( )= PLX(5)= ]

7(t) = [y (0).7,(0)...
Oz ()=l

an(t)ﬂ

If, in addition to the state space y and the transition matrix P(7), the initial
state probability vector  7(0)= [er(O)m(O),.] is specified, the CTMC is
completely specified.

Notice that P(t) = e?7, therefore the specification of Q is enough.
Two types of analysis will be carried out:

* transient analysis
- steady-state analysis
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TECNICO m(0) m(t)

- X’Q 7

Transient Analysis

(1) = P[X(t) = jl1= ) P[X(1) = j1X(0) =ilP[X(0) =il = } p,(t)m,(0)

all i all i

This is the solution of:

- (**)
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State transition rate diagram
Total flow into state j = E q,7. (1)
i#]
Total flow out of state j = 2 q;.7,(1)

r#j

Net probability flow rate into state ; :

dr (t)
- S, - (}j q,r]n 0
i#] r#j

but 2 9jr=74);

r#j
therefore
dm (1)

o =4/ (f) + E q,;7T; (f) exactly the same as (**)

l#]
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Steady-State Analysis

Q.: What is the probability of finding a MC at state i in the long run,
i.e., after a period of time long enough so that the state probabilities
have reached fixed values which do not change with time!?

7= limz (f)

>

Issues to be addressed:
* under what conditions do the above limits exist?

« if they exist, do they form a probability distribution, i.e., %_ﬂjﬂ !
allj

* how do we evaluate :tj?
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HOMOGENEOUS CTMC
State Probabilities

Steady-State Analysis

If the limits exist dn(t)
dt

All the results for CTMC parallel those for DTMC. We will state
only the most relevant result.

=0 = 71Q=0

Theorem 11: In an irreducible CTMC consisting of positive recurrent states,

a unique stationary state probability vector & exists such that 7>0 and

7= t"m th(t)
—>00
and the steady state probabilities are determined by
solving %_”F]
all

aQ =0
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State space of the equivalent CTMC: reachability set R[x,] of the exponential timed Petri net

Computation of the transition rate from state x; to state x; = x; is given by

4, = E )"k(xi)

t, ET;

Where T is the subset of T, enabled transitions in x; such that the firing of any
transition in T; leaves the CTMC in ;..

T = X, 4 = _quj

J=i
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Further reading
* Birth-Death chains — special structure facilitates the task of

obtaining explicit solutions for state probabilities (steady-state and
transient analysis).

 Lots of literature on Markov Chains

Acknowledgments to Jodao Sequeira, who helped preparing
some slides in this chapter, for some sessions of an ISR/IST
Reading Group on DES.



