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Abstract: A trajectory control for mobile robots goes through its robustness analysis as a 

final stage to control application in different systems. This work presents the robustness 

analysis for a multivariable trajectory tracking controller of the omni-directional mobile 

robot 5DPO for the Middle size League of Robot Soccer competition. The results were 

compared to the results from the robots in the Small size League that have less dynamic 

issues. This controller is validated with the variation of the dynamic system and the 

timing constant to follow different trajectories, as well as the sum of square error and the 

maximum absolute error.  
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1. INTRODUCTION 

 
An omni-directional robot is a robot able to move 

itself in any direction in the horizontal plane, without 

the pose re-orientation. This mobility is not usual in 

the most common mobile robots, with two wheels or 

four wheels, called differential mobile robots. 

Several studies have become frequent about omni-

directional robot trajectory tracking control research 

due to the need of agility of these vehicles providing 

a comprehensive study of case in the area of mobile 

robotics (Watanabe, 1998) , (Kodagoda, et al., 2002), 

(Liu and Zhu, 2007), (Liu, et al., 2008). 

 

A previous work in this subject presents a 

multivariable trajectory tracking controller applied to 

a Small Size league robot called AxeBot 

(Nascimento, et al., 2009). This control system 

considers the influence of the coupling nonlinearities 

when controlling a state-entrance linearized system. 

The main objective of this paper is to do a robustness 

analysis of this multivariable trajectory tracking 

controller by applying it to a robot with much 

different dynamics than the Axebot. This omni-

directional mobile robot would be the 5DPO mobile 

robot. 

 

The 5DPO is an omni-directional mobile robot, 

developed to play autonomously the soccer robots 

match, under, the RoboCup Federation Middle Size 

league rules. This paper applies the same controller 

directly to a nonlinear model of the 5DPO robot, 

which has more dynamic issues, analyzing its 

robustness by the response to the variations of 

trajectory size and velocity of tracking. This paper 

also presents some results for trajectory tracking 

from Matlab Simulink environment. The paper 

organization attempt to the following sequence: at 

section 2 the omni-directional mobile robot is 

presented with the respective Dynamic Modeling 

according a comprehensive approach using a space 

state format. Section 3 presents the cascade control 

system analyzed. At section 4 the results for 

trajectory tracking, under Matlab Simulink 

environment are shown. Finally at section 5 final 

comments and future works are presented. 

 



 

     

 
 
Fig. 1. The 5DPO robot. 

 

 

2. THE 5DPO ROBOT 
 
The mobile robot 5DPO used as a study case of this 

paper is presented here. Fig. 1 shows a photo of the 

real robot equipped with three omni-directional 

wheels arranged at 120 degrees from each other. 

Three DC Maxon motors with digital speed encoder 

and a planetary 12:1 gearbox are used as actuators 

for the robot locomotion system. The electronic 

system of the 5DPO robot is composed by three 

motor drives to control the motor speed. These drives 

have ATMega8 microcontrollers embedded with a 

Proportional-Integral speed controller set by the 

Ziegler–Nichols method (Conceição, et al., 2008). 
 
The complete study of the kinematic and dynamic 

modelling of an omni-directional mobile robot can 

be seen in Nascimento, et al. (2009). Nevertheless, 

the final kinematic model can be seen in equation (1) 

through the analysis of Fig. 2. There it can be seen 

that the velocities of the robot with a reference to a 

inertial point is given by a rotation matrix times the 

motors angular velocities, its transformation to linear 

velocity (by multiplying to the wheel’s radius en 

divided by the gear coupling) and a B matrix that 

translates the velocities from the wheels to the center 

of mass. 
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The dynamic model is also presented below. This 

model is nonlinear model in space state form where 

the f(x(t)) is the first two terms in the sum, g(x(t)) is 

the last term in the sum, )()( ttx mw
r

= , )()( ttx mw&
r

& =   

 
 
Fig. 2. The coordination system. 

 

and utu =)( , with is both entrance of control and 

tension of the motors (Slotine and Li, 1991). 
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From the above equations it can be said that rω is the 

radius of the wheel, l is the robot’s diameter, N is the 

coupling factor and η is the efficiency of the motor-

wheel engagement, m is the robot’s mass and J is the 

robot’s moment of inertia. Also It has u as the 

motor’s tension; R the resistance of the armature; kt 

the constant torque of the motor, kem the constant of 

counter-electromotor force; Jm the moment of inertia 

of each rotor (i.e. the sum of the moments of inertia 

of the motor shaft and reducing the system, 

respectively), b0 the coupling damping constant. 

 

 

3. THE CASCADE CONTROL SYSTEM 
 
The control loop to be analyzed for the 5DPO robot 

can be seen in Fig. 3. The 5DPO nonlinear model can 

be seen by the first block (from right to left). One can 

see that the speed controller used is a PID, although 

as said before, it is actually a PI controller for each 

motor. Together with the nonlinear model, it makes 

the internal control loop. It is remarkable that the 

system has three SISO PI controllers being a 

nonlinear multivariable strongly coupled system, but 

the control law for the inner loop is not. 

Nevertheless, it generates an error at steady state that 

can be corrected by another external control loop 

characterizing this as a cascade controller system.  



 

     

 
Fig. 3. The cascade control used. 

 

This external and multivariable trajectory tracking 

control block can be seen after the PI controllers 

(from right to left), receiving data from the error 

between the robot’s position and the Trajectory 

Generator’s reference position and from the robot’s 

velocities. 
 
The cascade control allows the stationary errors 

generated by speed controllers to be corrected by the 

trajectory controller. This architecture is based on the 

singular perturbation theory, commonly known as 

the time-scale separation principle, which assumes 

that the internal loop is exponentially stable and the 

bandwidth of internal loop is much greater than the 

external dynamics of the mesh, so that the loop of the 

external controller can be designed ignoring the 

dynamics of the internal loop (Liu, et al., 2008). The 

inner control loop was set by the Ziegler–Nichols 

method and its values of P, I and D were 

respectively 245.0=P , 0112.0=I  and 0=D . 

 

The external loop is the multivariable control to be 

analyzed. This controller was implemented in the 

same way as in Nascimento, et al. (2009), through 

the theory based in O’Reylly (1987). The positioning 

system is known as the homogeneous transformation 

of coordinates. This equation can also be seen as: 
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Therefore, it can be said that, linearizing VI (robot’s 

velocity vector with respect to inertial position) with 

respect to PI (robot’s position vector with respect to 

inertial position) and VCM (robot’s velocity vector 

with respect to the robot’s center of mass) around the 

equilibrium point, it becomes: 
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Therefore, the multivariable trajectory tracking 

control law is such as the following. 
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To say a controller is robust, is to say it can be 

applied in different dynamic variations in a kind of 

system. To analyze the multivariable controller it was 

necessary to put the same controller in a similar 

environment (an omni-directional mobile robot) with 

a much hard dynamics and submit this system to a 

variety of external parameters configuration such as 

timing on trajectory tracking. Considering this 

analysis, it was used in the 5DPO robot controller the 

same parameters set in the Axebot robot. Therefore, 

the external controller obtained its best performance 

with the values of 8.0=Pk  and 16=Ik .  

 
 

4. RESULTS 
 
To analyse the multivariable controller’s robustness, 

several trajectory tracking tests were made. The 



 

     

principal issue is to put a controller design to small 

robots, with small dynamic issues, in middle size 

robots with bigger problems concerning the dynamic 

of the system to be controlled. To resume, a bigger 

robot calls for a better and more robust controller to 

overpower the difficulty in minimizing the trajectory 

tracking error. 

 

It is necessary also to have in mind that this 

controller is to be compared with the results obtained 

by Nascimento, et al. (2009). A comparison between 

the dynamic parameters of the Axebot robot and the 

5DPO robot can show the growth of the dynamic 

problem and it can be seen in the Table 1. 

 

The tests were made in Matlab Simulink 

environment. The robot was put to follow two 

different trajectories: an eight and a complex 

trajectory, both with a considered level of 

complexity. Both trajectories were made with three 

different tracking time: 5, 10 and 100 seconds. Also, 

two sizes of trajectories were: a small size (1x1.5 

meters for the 8 trajectory and 2x1.5 meters for the 

complex) and a big size (3x5.5 metres for the 8 

trajectory and 6x6 meters for the complex). These 

testes generated twelve graphics that can be seen 

below. 
 
 
4.1 Small size trajectories 

 

 
 
Fig. 3. The 8 trajectory in 5 seconds. 

 
 
Fig. 4. The 8 trajectory in 10 seconds. 

 

 
 
 
 
 
 

Table 1 Dynamic parameters values 
 

Parameter  Axebot  5DPO   
 M (kg)  1,83  26 

 d (m)  0,09  0,195 

 rω (m)   0,072  0,51 

 kt (Nm/A) 0,0059  0,0302 

 kem (Nm/A) 0,0059  0,0302 

 N  19  12 

 R (Ω)  1,79  0,316 

 J (kgm
2
)  2,125  0,705 

 Jω (kgm
2
) 8,1x10

-4
  0,338 

 Jm (kgm
2
) 3,88x10

-7
   1,39 x10

-5
 

  
 

 
 
Fig. 5. The 8 trajectory in 100 seconds. 

 

 
 
Fig. 6. Complex trajectory in 5 seconds. 

 

 
 
Fig. 7. Complex trajectory in 10 seconds. 

 

It is obvious that for smaller trajectories the 

controller has a better performance. Also for 

trajectories that has less rush variations in the 

curvature the controller works better. Even though, 

the controller works with a significant good 

performance. 

 



 

     

 
 
Fig. 8. Complex trajectory in 100 seconds. 
 
 
4.2 Big size trajectories 

 

Here it can be seen the performances for a bigger 

trajectory, both in eight format and a more complex 

trajectory. 

 

 
 
Fig. 9. The 8 trajectory in 5 seconds. 

 

 
 
Fig. 10. The 8 trajectory in 10 seconds. 

 

 
 
Fig. 11. The 8 trajectory in 100 seconds. 

 

 
 
Fig. 12. Complex trajectory in 5 seconds. 

 

 
 
Fig. 13. Complex trajectory in 10 seconds. 

 

 
 
Fig. 14. Complex trajectory in 100 seconds. 

 

 
 
Fig. 15. Tension of all three motors in a Complex 

trajectory big size in 10 seconds. 

 

Those graphics above show that the controller can 

handle a realistic situation in both types of 

trajectories. Although the tracking of a big trajectory 

in 5 seconds is the only unrealistic situation, the 

controller was successful in tracking it. It can be 

observed that the maximum velocity of the robot was 



 

     

achieved in fast situations (i.e. 5 and 10 seconds in 

the big trajectory size). 
 

Another observation is about the motor’s saturation 

in the 24 V. This tension also was achieved as it can 

be seen in the Fig. 15 when performing a complex 

trajectory in a little time as 10 seconds. Finally, for 

each trajectory reference, the sum of square error in 

X axis and Y axis in square meters (m
2
) was 

measured. The results are shown at Table 2. The 

Table 3 shows the maximum absolute error in X and 

Y for all trajectories. Remembering that the robot has 

40 cm of diameter, it can be said that, once again, 

except for the 5 seconds tracking (which is 

unrealistic) the controller had a good performance in 

tracking both trajectories. 

 

 

5. FINAL COMMENTS 
 
A multivariable approach for a trajectory tracking 

control system for omni-directional mobile robots 

and the respective results for two different trajectory 

references tracking were presented in this paper to 

analyze this multivariable controller’s robustness. 

The efficiency in using a multivariable approach for 

trajectory tracking control can be seen from the 

presented trajectories: in eight format and the 

complex. Also a quantitative evaluation about the 

sum of square error in X axis and Y axis in square 

meters (m
2
) is shown at Table 2, as well as the 

maximum absolute error in X axis and Y axis in 

meters (m) is shown at Table 3. It certifies the 

efficiency of the proposed approach for the trajectory 

tracking control system for omni-directional mobile 

robots such as the AxeBot (Nascimento, et al., 2009) 

and the 5DPO robot. Note that the results considered 

the diameter of the robot (40 cm) that leaves the error 

measurement almost irrelevant. The results point out 

to the importance to consider both systems to certify 

that this controller could work in both of them even 

with the difference in the dynamic parameters that 

increase the controlling problem. 
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