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Abstract prisingly, some of the primary work in this area has emerged
from a number of different scientific fields, such as pho-
ThisarticlepresentsGraphSLAM, aunifying algorithmfor theoffline  togrammetry, computer vision (Tomasi and Kanade 1992;
SLAM problem. GraphSLAM is closely related to a recent sequence  Pollefeys, Koch, and Gool 1998; Soatto and Brockett 1998),
of research papers on applying optimization techniques to SSAM  computer graphics (Levoy 1999; Rusinkiewicz and Levoy
problems. It transforms the SLAM posterior into a graphical net-  2001), and robotics (Dissanayake et al. 2001).
work, representing thelog-likelihood of the data. It then reducesthis In the SLAM community (SLAM is short for simultaneous
graph using variable elimination techniques, arriving at a lower-  |ocalization and mapping), filter techniques such as the well-
dimensional problems that is then solved using conventional opti-  studied extended Kalman filter (EKF) have become a method
mization techniques. As a result, GraphSLAM can generate maps  of choice for model acquisition. The EKF was introduced
with 108 or more features. The paper discusses a greedy algorithm  mathematically by Cheeseman and Smith (1986), and imple-
for data association, and presents results for SLAM in urban envi- - mented by Moutarlier and Chatila (1989a). This research has
ronments with occasional GPS measurements. led to hundreds of extensions in recent years. Some of these
KEY WORDS—SLAM, robot navigation, localization, approaches map the post_eriorinto sparse graphical structures
mapping (Bosse et_ al. 200_3;_ Pask_m 200_3; T_hrun et al. 2002), to gain
computational efficiency in the filtering process.
. However, a key disadvantage of a filter technique is that
1. Introduction data is processed and then discarded. This makes it impos-

sible to revisit all data at the time of map building. Offline

In recent years, there have been a number of projects seekjgghniques, introduced by Lu and Milios (1997) and a number
to map physical gnvwonments Wlth moving sensor platform%ffonow_up papers (Golfarelli, Maio, and Rizzi 1998; Duck-
Classical work includes mapping from the air (Konecnyy; marsland, and Shapiro 2000; Frese and Hirzinger 2001;
2002), the ground (Elfes 1987; Moravec 1988), and undegynolige 2004), offer improved performance by memorizing
water (Williams, Dissanayake, and Durrant-Whyte 2001). ;| gata and postponing the mapping process until the end. Fol-
includes indoor (El-Hakim et al. 1997; locchi, Konolige, anqgying observations in Golfarelli, Maio, and Rizzi (1998), the
Bajracharya 2000), outdoor (Teller et al. 2001), and SUbteﬁbsterior of thefull SLAM problem naturally forms asparse
ranean mapping (Baker etal. 2004). The development of teGl-apn, This graph leads to a sum of nonlinear quadratic con-
niques for the acquisition of such maps has been driven Ryaints. Optimizing these constraints yields a maximum like-
a number of desires. They include photo-realistic rendering,qog map and a corresponding set of robot poses.

(Allen and Stamos 2000; Bajcsy, Kamberova, and Nocera Thjg article represents a novel algorithm for mapping us-
ZQOO), surveillance (Wang, Thorpe, and Thrun 2003),.SC|en1—g sparse constraint graphs, callBtaphSLAM. The basic

tific measurement (Baker et al. 2004), and robot guidanggyition behind GraphSLAM s simple: GraphSLAM extracts
(Williams, Dissanayake, and Durrant-Whyte 2001). Not SUfom, the data a set of soft constraints, represented by a sparse

The International Journal of Robotics Research graph. It obtains the map and the robot path by resolving these
Vol. 25, No. 5-6, May—June 2006, pp. 403-429 constraints into a globally consistent estimate. The constraints
DOI: 10.1177/0278364906065387 are generally nonlinear, but in the process of resolving them
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solved using standard optimization techniques. We will den Frese and Hirzinger (2001). Araneda (2003) developed a
scribe GraphSLAM both as a technique for building a sparseore detailed elaborate graphical model.
graph of nonlinear constraints, and as a technique for popu- The Lu and Milios algorithm initiated a development of of-
lating a sparse “information” matrix of linear constraints. fline SLAM algorithms that up to the present date runs largely
When applied to large-scale mapping problems, we finglarallel to the EKF work. Gutmann and Konolige combined
that GraphSLAM can handle large number of features, aneir implementation with a Markov localization step for es-
even incorporate GPS information into the mapping procedsblishing correspondence when closing a loop in a cyclic en-
These findings are based on data acquired by a mobile rolv@onment. Bosse et al. (2003, 2004) developed Atlas, which
system built to acquire 3-D maps of large-scale urban envs a hierarchical mapping framework based on the decoupled
ronments. stochastic mapping paradigm, which retains relative informa-
This article is organized as follows. We begin with an extion between submaps. It uses an optimization technique sim-
tended review of the literature. We then describe GraphSLAN&r to the one in Duckett, Marsland, and Shapiro (2000) and
intuitively, and characterize it both using graph-theoreticabraphSLAM when aligning multiple submaps. Folkesson and
and information-theoretical terms. We state the basic algGhristensen (2004a,b) exploited the optimization perspective
rithm and derive it mathematically from first principles. Weof SLAM by applying gradient descent to the log-likelihood
then extend to address the data association problem. Fina{lgrsion of the SLAM posterior. The@®raphical SLAM algo-
we present experimental results and discuss future extensigjism reduced the number of variables to the path variables—

of this approach. justlike GraphSLAM—when closing the loop. This reduction
(which is mathematically an approximation since the map is
2. Related Work simply omitted) significantly accelerated gradient descent.

. , Konolige (2004) and Montemerlo and Thrun (2004) intro-
Inrobotics, the SLAM problemwas introduced through aseMy,cedconjugate gradient into the field of SLAM, which is
inal series of papers by Cheeseman and Smith (1986); Sm%

dch “smith. Self and Ch own to be more efficient than gradient descent. Both also
and Cheeseman (1986); Smith, Self, and Cheeseman (199Q) e the number of variables when closing large cycles,

These papers were the first to describe the well-known E nd report that maps with 16eatures can be aligned in just a

SLAM algorithm, often used as a benchmark up to the pres
day. The first implementations of EKF SLAM were due til%(/v seconds. Frese, Larsson, and Duckett (2005) analyzed the

) . fficiency of SLAM in the information form, and developed
\I\//Ivzuigrl(ligg;)d g:rit:al6:1Sr?Sierlt,itf)i)c;?dblésggr?;dainlir%%;arn%ghly efficient optimization techniques using multi-grid op-

Y ' . g art l&r’nization techniques. They reported speedups of several or-
Today, SLAM is a highly active field of research, as a recen

workshop indicates (Leonard et al. 2002). ers of magnitude; the resulting optimization techniques are

The first mention of relative, graph-like constraints in thé re;fer;]tly Itglz state-?f-the;?rr]t. t the intuition t intain rel
SLAM literature goes back to Cheeseman and Smith (1986 shotlid be mentioned that the Infultion to maintain reia-
ave links between local entities is at the core of many of the

and Durrant-Whyte (1988), but these approaches did not p b ) hni di din th : :
form any global relaxation, or optimization. The algorithmgu mapping techniques discussed in the previous section—

presented in this paper is loosely based on a seminal paperd§iough it is rarely made explicit. Authors such as Guivant
Lu and Milios (1997). They were historically the first to rep-21d Nebot (2001), Williams (2001), Bailey (2002) and Tardés
resent the SLAM prior as a set of links between robot pose%E al. (2002) report data structures fpr mlnutlng_the relative
and to formulate a global optimization algorithm for generdisplacement between submaps, which are easily mapped to
ating a map from such constraints. Their original algorithrformation theoretic concepts. While many of these algo-
for globally consistent range scan alignment used the robdihms are filters, they nevertheless share a good amount of
pose variables as the frame of reference, which differed frotsight with the graphical information form discussed in this
the standard EKF view in which poses were integrated olRaper.

Through analyzing odometry and laser range scans, their ap-T0 our knowledge, the GraphSLAM algorithm presented
proach generated relative constraints between poses that B&f¢ has never been published in the present form. However,
be viewed as the edges in GraphSLAM; however, they did nétraphSLAM is closely tied to the literature reviewed above,
phrase their method using information representations. Lu aRdlilding on Lu and Milios’s (1997) seminal algorithm. The
Milios’s (1997) algorithm was first successfully implementediameGraphSLAM bears resemblance to the na@rphical

by Gutmann and Nebel (1997), who reported numerical inst&-AM by Folkesson and Christensen (2004a); we have chosen
bilities, possibly due to the extensive use of matrix inversiorit for this paper because graphs of constraints are the essence
Golfarelli, Maio, and Rizzi (1998) were the first to establistof this entire line of SLAM research. A number of authors
the relation of SLAM problems and spring-mass models, arfthve developefiltersin information form, which address the
Duckett, Marsland, and Shapiro (2000, 2002) provided a firshline SLAM problem instead of the full SLAM problem.
efficient technique for solving such problems. The relatiofihese algorithms will be discussed in the coming paper, which
between covariances and the information matrix is discusse#plicitly addresses the problem of filtering.
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Graph-like representations have also been applied in thae will usex,, to denote the set of poses from time 1 all the
context of SLAM filtering algorithms. In 1997, Csorba develway to timer. The world itself is denotedk, wherem is short
oped an information filter that maintained relative informafor map. The map is assumed to be time-invariant, hence we
tion between triplets of three landmarks. He was possibly tlt® not use a time index to denote the map. In this paper, we
first to observe that such information links maintained globahink of the map of a (large) set of features.
correlation information implicitly, paving the way from algo-  To acquire an environment map, the robot is able to sense.
rithms with quadratic to linear memory requirements. NewFhe measurement at timds denoted;,. Usually, the robot
mann (2000) and Newman and Durrant-Whyte (2001) devatan sense multiple features at each point in time; hence each
oped a similar information filter, but left open the questiomndividual measurement beam is denogedCommonly, one
of how the landmark-landmark information links are actuassumes that is a range measurement. The measurement
ally acquired. Under the ambitious nanwensistent, conver-  function 2 describes how such a measurement comes into
gent, and constant-time SLAM,’ Leonard and Newman fur- being:
ther developed this approach into an efficient alignment al- A _
gorithm, which was successfully applied to an autonomous g, = h(x,myi)+¢ (1)
underwater vehicle using synthetic aperture sonar (Newm
and Rikoski 2003). Another seminal algorithm in the field i
Paskin’s (2003Y}hin junction filter algorithm, which repre-
sents the SLAM posterior in a sparse network known as th
junction trees (Pearl 1988; Cowell et al. 1999). The sameid
was exploited by Frese (2004), who developed a similar tree } 1
factorization of the information matrix for efficientinference. Pz | Xi.m) = CONSt exp—z (z, — h(x,. m;, i)’

Julier and Uhlmann (2000) developed a scalable technique ,

calledcovariance intersection, which sparsely approximates 07" (2 — h(x;,mj, i) 2

Epﬁ posterlqr in a way that provable_ prevents overconﬂden’cgome robotic systems are also are provided with a GPS sys-
eir algorithm was successfully implemented on NASA .

MARS Rover fleet (Uhlmann, Lanzagorta, and Julier 1999??”1' Then the measurement is of the form

The information filter perspective is also related to early work 7 = h(x.i)+¢ 3)

by Bulata and Devy (1996), whose approach acquired land- ! !

mark models firstin local landmark-centric reference framesihere ! is a noisy estimate of the posg ande! is once

and only later assembles a consistent global map by resolviagain a Gaussian noise variable The mathematics for such

the relative information between landmarks. Another onlinmeasurements are analogous to those of nearby features; and

filter related to this work is the SEIF algorithm, which wasGraphSLAM admits for arbitrary measurement functiéns

developed by Thrun et al. (2002). A greedy data association Finally, the robot changes its pose in SLAM by virtue of

algorithm for SEIFs was developed by Liu and Thrun (2003)ssuing control commands. The control asserted between time

which was subsequently extended to multi-robot SLAM by — 1 and timer is denoted:,. The state transition is governed

Thrun and Liu (2003). A branch-and-bound data associatidsy the functiong:

search is due to Hahnel et al. (2003), based on earlier branch-

and-bound methods by Lawler and Wood (1966) and Naren- X, = glu,x1)+6, (4)

dra and Fukunaga (1977). It parallels work by Kuipers et al. o

(2004), who developed a similar data association techniqué€red: ~ A(0, R,) models the noise in the control com-

albeit not in the context of an information theoretic concepténand' The functiorg can.be tho_ught of as the kmemapp

Finally, certain ‘offline’ SLAM algorithms that solve the full Model of the robot. Equation (4) induces the state transition

SLAM problem, such as the ones by Bosse et al. (2004jroPability

Gutmann and Konolige (2000), and Frese (2004), have been 1

shown to be fast enough to run online on limited-sized data P(x: | u:, x,-1) = const exp—3 (x — gy, x,-1))"

sets. None of these approaches address how to incorporate

occasional GPS measurements into SLAM. R (x — guy, xi-1)) (5)

re]zres;’ is a Gaussian random variable modeling the measure-
ment noise, with zero mean and covariagteandm is the

ap feature sensed by theh measurement beam at time

éjt differently, we have

. . The offline SLAM posterior is now given by the following
3. Mapping SLAM Problemsinto Graphs posterior probability over the robot path, and the mapm:

3.1. The Offline SLAM Problem

We begin our technical exposition with the basic notation used
throughout this article. In SLAM, time is usually discrete, and his is the posterior probability over the entire pathalong
t labels the time index. The robot pose at timigdenotedr,;;  with the map, instead of just the current pasé/Ne note that

p(xl:lv m | 2115 ulzz) (6)
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in many SLAM problems, it suffices to determine the mode large system of equations. As usual, we will denote the in-
of this posterior. The actual posterior is usually too difficulformation matrix byQ2 and the information vector b§. As
to express for high-dimensional maps since it contains we shall see below, each measurement and each control leads
dependencies between any pair of features.in to alocal update of2 and&, which corresponds to a local

We note that a key assumption in our problem formulaaddition of an edge to the graph in GraphSLAM. In fact, the
tion is the assumption of independent Gaussian noise. Graphle for incorporating a control or a measurement ftand
SLAM shares this assumption with the vast majority of pubg is a local addition, paying tribute to the important fact that
lished papers in the field of SLAM. The Gaussian noise agformation is an additive quantity.
sumption proves convenient in that it leads to a nice set of Figure 2 illustrates the process of constructing the graph
guadratic equations which can be solved efficiently. Othedong with the corresponding information matrix. First con-
SLAM approaches have relaxed this assumption (Montemerbider a measuremegjt This measurement provides informa-
etal. 2002) or made special provisions for incorporating nonion between the location of the featufe= ¢! and the robot
Gaussian noise into Gaussian SLAM (Guivant and Massqosex, at timez. In GraphSLAM, this information is mapped
2005). into a constraint between andm ;. We can think of this edge

as a (possibly degenerate) “spring” in a spring-mass model.

3.2. GraphSLAM: Basic I dea As we shall see below, the constraint is of the type:

Figure 1 illustrates the GraphSLAM algorithm. Shown there _ N .
is the graph that GraphSLAM extracts from four poses labeled (2, — h(x,, m;, D))" Q. (z, — h(x,, m;, i) (7
X1, ..., X4, and two map features,, m,. Arcs in this graph

come in two types: motion arcs and measurementarcs. MotipRye, is the measurement function, agdis the covariance
arcs link any two consecutive robot poses, and measuremggte measurement noise. Figure 2(a) shows the addition
arcs link poses to features that were measured there. EQghy,ch a link into the graph maintained by GraphSLAM.
edge in the graph corresponds to a nonlinear constraint. R$jie that the constraint may begenerate, that is, it may not

we shall see later, these constraints represent the negative 18@ strain all dimensions of the robot poseThis will be of
likelihood of the measurement and the motion models, hengg -oncern for the material yet to come.

are best thought of aaformation constraints. Adding sucha |, information form, the constraint is incorporated i

cons_tra_irjt to the graph _is trivial for GraphSLAM,; it_ involvesandg by adding values between the rows and columns con-

no S|gn|f!cant computation. The sum of all co_nstr.amts res“'ﬁectingx,,l andx,. The magnitude of these values corresponds

in & nonlineaieast squares problem, as stated in Figure 1., the stiffness of the constraint, as governed by the uncertainty
To compute amap posterior, GraphSLAM linearizes the Sgh,ariancep, of the motion model. This is illustrated in Fig-

of constraints. The result of linearization is a sparse informa;.. 2(b), which shows the link between two robot poses along

tion matrix and an information vector. The sparseness of thiS, the corresponding element in the information matrix.
matrix enables GraphSLAM to apply the variable elimination \ow consider robot motion. The contro] provides in-

algorithm, thereby transforming the graph into a much smallggmation about the relative value of the robot pose at time

one only defined over robot poses. The path posterior map,is q and the pose at time Again, this information induces
then calculated using standard inference techniques. Graghs

A : “ld Constraint in the graph, which will be of the form:
SLAM also computes a map and certain marginal posteriors
over the map; the full map posterior is of course quadratic in
the size of the map and hence is usually not recovered. (X, — gy, x-0)" R (xy — gy, X,-1)) (8)

3.3. Building Up the Graph Hereg is the kinematic motion model of the robot, aRdis
the covariance of the motion noise. Figure 2(b) illustrates the

Suppose we are given a set of measuremgntwith associ- addition of such a link in the graph. It also shows the addition
ated correspondence variabtgs, and a set of controlg,... of a new element in the information matrix, between the pose
GraphSLAM turns this data into a graph. The nodes of this and the measuremegjt This update is again additive. As
graph are the robot poses, and the features in the mapbefore, the magnitude of these values reflects the residual
m = {m;}. Each edge in the graph corresponds to an evenincertaintyR, due to the measurement noise; the less noisy
a motion event generates an edge between two robot pogbe, sensor, the larger the value addetandé.
and a measurement event creates a link between a pose and After incorporating all measurements and controls:.,,
feature in the map. Edges represent soft constraints betwees obtain a sparse graph of soft constraints. The number of
poses and features in GraphSLAM. constraints in the graph is linear in the time elapsed, hence the

For a linear system, these constraints are equivalent to gyraph is sparse. The sum of all constraints in the graph will
tries in an information matrix and an information vector obe of the form
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Fig. 1. GraphSLAM illustration, with 4 poses and two map features. Nodes in the graphs are robot poses and feature
locations. The graph is populated by two types of edges: Solid edges which link consecutive robot poses, and dashed
edges, which link poses with features sensed while the robot assumes that pose. Each link in GraphSLAM is a non-linear
guadratic constraint. Motion constraints integrate the motion model; measurement constraints the measurement model. The tar-
getfunction of GraphSLAM is sum of these constraints. Minimizing it yields the most likely map and the most likely robot path.

J — T Quxy + X — 2, x,1))" from the quearized info_rmation matri® and the informati.on
s = 5 030 + D (00 = g(urx1-2) vector, via the equation®€ = Q' andu = ¥ £. This
operation requires us to solve a system of linear equations.
This raises the question on how efficiently we can recover the

t

R;:L ()C, - g(un xt—l))

+ Z Z(Zj — h(y,, ¢, )T map estimate.
r The answer to the complexity question depends on the
0 (@ —h(y, ¢, i) 9) topology of the world. If each feature is seen only locally

in time, the graph represented by the constraints is linear.
It is a function defined over pose variables and all fea- Thus,<2 can be reordered so that it becomes a band-diagonal
ture locations in the maj. Notice that this expression alsomatrix, thatis, all non-zero values occur near its diagonal. The
features aranchoring constraint of the formx? €, xo. This ~ equationu = Q' can then be computed in linear time. This
constraint anchors the absolute coordinates of the map by iffituition carries over to a cycle-free world that is traversed
tializing the very first pose of the robot & 0 0). once, sothateach feature is seen for a short, consecutive period
In the associated information matriX, the off-diagonal of time.
elements are all zero with two exceptions: between any two The more common case, however, involves features that
consecutive poses_, andx, will be a non-zero value that are observed multiple times, with large time delays in be-
represents the information link introduced by the control tween. This might be the case because the robot goes back
Also non-zero will be any element between a map feature and forth through a corridor, or because the world possesses
and a pose,, if m; was observed when the robotwasai\ll  cycles. In either situation, there will exist features; that
elements between pairs of different features remain zero. Tkige seen at drastically different time stepsandx,,, with
reflects the fact that we never receive information pertaining > #,. In our constraintgraph, this introduces a cyclic depen-
to their relative location—all we receive in SLAM are meadencex, andx, are linked through the sequence of controls
surements that constrain the location of a feature relative #Q ., u, .5, . . . , u,, and through the joint observation links be-
a robot pose. Thus, the information matrix is equally sparstyeenx, andm ;, andx,, andm ;, respectively. Such links make
all but a linear number of its elements are zero. our variable reordering trick inapplicable, and recovering the
map becomes more complex. In fact, since the inverseisf
3.4. Inference multiplied with a vector, the result can be computed with op-
Of course, neither the graph representation nor the inform@mization techniques such as conjugate gradient, without ex-
tion matrix representation gives us what we want: the map aficitly computing the full inverse matrix. Since most worlds
the path. In GraphSLAM, the map and the path are obtain@@ssess cycles, this is the case of interest.
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(a) Observation Is landmaurk 1

my

(b) Robot motion fromxq to xo

. jl T X, i
oo AR
o v -

Xy Xy

(c) Several steps later

N X 5L XK mRSmom

Fig. 2. lllustration of the acquisition of the information matrix in GraphSLAM. The left diagram shows the dependence graph,
the right the information matrix.

The GraphSLAM algorithm now employs an importantve can remove all those springs betweenand the poses at
factorization trick, which we can think of as propagating in-whichm ; was observed, by introducing new springs between
formation trough the information matrix (in fact, it is a gen-any pair of such poses.
eralization of the well-knownariable elimination algorithm This process is illustrated in Figure 3, which shows the
for matrix inversion). Suppose we would like to remove a fearemoval of two map features;; andms (the removal ofn,
turem; from the information matrix2 and the information andm, is trivial in this example). In both cases, the feature
state. In our spring mass model, this is equivalent to remowemoval modifies the link between any pair of poses from
ing the node and all springs attached to this node. As we shaihich a feature was originally observed. As illustrated in Fig-
see below, this is possible by a remarkably simple operationte 3(b), this operation may lead to the introduction of new
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(a) The removal ofn1 changes the link between andxo

K o
\\\ﬂﬁl .

X X, T, X, M, M. m,m

(b) The removal ofn3 introduces a new link between andxy
b T SE. i o m,m

(c) Final result after removing all map features

B— b= |||
X, X, X X,

Fig. 3. Reducing the graph in GraphSLAM: Arcs are removed to yield a network of links that only connect robot poses.
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links in the graph. In the example shown there, the removedbot poses, which are then calculated using matrix inversion.

of ms leads to a new link between andx,. Once the poses are recovered, the feature locations are calcu-
Letz () be the set of poses at whigh was observed (that lated one after another, based on the original feature-to-pose

isix, € t(j) < 3i : ¢! = j). Thenwe already know that the information.

featurem; is only Imked to poses, in (j); by construction,
;is not linked to any other pose, or to any feature in the

map We can now set all links between and the poses(;) 4. The GraphSLAM Algorithm

to zero by introducing a new link between any two pose@/e will now make the various computational steps of the
x;, xy € T(j). Similarly, the information vector values for GraphSLAM precise. The full GraphSLAM algorithm will
all posesr (/) are also updated. An important characteristige described in a number of steps. The main difficulty in
of this operation is that it is local: It onIy involves a Sma”imp|ementing the simp|e additive information a|gorithm per-
number of constraints. After removing all linksitg, we can  tains to the conversion of a conditional probability of the form
safely removen; from the information matrix and vector. p(Z | x,, m)andp(x, | u,, x,_;) into alink in the information
The resulting information matrix is smaller—it lacks an entrymatrix. The information matrix elements are all linear; hence
for m,;. However, it is equivalent for the remaining variablesihis step involves linearizing(z’ | x,, m) andp(x, | u,, x,_1).
in the sense that the posterior defined by this informatiory perform this linearization, we need an initial estimate
matrix is mathematically equivalent to the original posteriofor all posesx, .
before removing;. This equivalence is intuitive: We simply  There exist a number of solutions to the problem of finding
have replaced springs connecting to various poses in our an initial meary suitable for linearization. For example, we
spring mass model by a set of springs directly linking thesgan run an EKF SLAM and use its estimate for linearization
poses. In doing so, the total force asserted by these springfssanayake et al. 2001). GraphSLAM uses an even sim-
remains equivalent, with the only exception thatis now pler technique: our initial estimate will simply be provided
disconnected. by chaining together the motion mode(x, | u,, x,_1). Such

The virtue of this reduction step is that we can graduallgn algorithm is outlined in Table 1, and called th€&weaph-
transform our inference problem into a smaller one. By regi AM _initialize. This algorithm takes the contrals, as in-
moving each feature:; from 2 andg, we ultimately arrive put, and outputs sequence of pose estimageslt initializes
at a much smaller information fori and£ defined only the first pose by zero, and then calculates subsequent poses
over the robot path variables. The reduction can be carrigg recursively applying the velocity motion model. Since we
outin time linear in the size of the map; in fact, it generalizegre only interested in the mean poses vegtgr, Graph-
the variable elimination technique for matrix inversion to th&|. AM initialize only uses the deterministic part of the mo-
information form, in which we also maintain an informationtion model. It also does not consider any measurement in its
state. The posterior over the robot path is now recovered @stimation.
¥ = Q'andi = 2¢. Unfortunately, our reduction stepdoes  Once aninitial,, is available, the GraphSLAM algorithm
not eliminate cycles in the posterior. The remaining inferencggnstructs the full SLAM information matri and the corre-
problem may still require more than linear time. sponding information vectdr. This is achieved by linearizing

As a last step, GraphSLAM recovers the feature locationfhe links in the graph. The algorith@raphSLAM _linearize
Conceptually, this is achieved by building a new informatiofs depicted in Table 2. This algorithm contains a good amount
matrix Q; and information vectog; for eachm;. Both are  of mathematical notation, much of which will become clear
defined over the variable; and the poses(j) at whichm; in our derivation of the algorithm further belowsraph-
were observed. It contains the original links betwegrand S| AM _linearize accepts as an input the set of contrals,
(j), but the poses () are set to the values i, without  the measurements,, and associated correspondence vari-
Uncertainty. From this information form, it is now Simple thb|eSCl:“ and the mean pose estima;als_ It then gradua”y
calculate the location of:;, using the common matrix inver- constructs the information matriX and the information vec-
sion trick. Clearly2; contains only elements that connect taor ¢ through linearization, by locally adding sub-matrices in
m ; hence the inversion takes time linear in the number @fccordance with the information obtained from each measure-
poses inc(j). ment and each control.

It should be apparent why the graph representation is such|n particular, line 2 inGraphSLAM _linearize initializes
a natural representation. The full SLAM problem is solveghe information elements. The “infinite” information entry in
by locally adding information into a large information graphjine 3 fixes the initial pose, to (0 0 0)”. Itis necessary, since
one edge at a time for each measuremgand each control otherwise the resulting matrix becomes singular, reflecting the

u,. To turn such information into an estimate of the map angct that from relative information alone we cannot recover
the robot path, it is first linearized, then information betweegpsolute estimates.

poses and features is gradually shifted to information between Controls are integrated in lines 4 through 9 ®faph-
pairs of poses. The resulting structure only constrains thg AM _linearize. The pose& and the Jacobia@, calculated
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Table 1. Initialization of the Mean Pose Vector ., in the GraphSLAM Algorithm

1 Algorithm GraphSLAM _initialize(u,.):
Mo, x 0
2: Mo,y = 0
Moe 0
3: for all controls u, = (v, w,)" do
I’Lr.x I’erl,x
4: Mty - M1y
M0 Mi-1.0
_:T// sinp,_19 + :7// sin(i,_1 + o, At)
4. + ;TZ COSit;—19 — ;—’r COj41—19 + @, AL)
w, At
5: endfor
6: return [Lo,

Table 2. Calculation of Q and & in GraphSLAM

1 Algorithm GraphSLAM _linearize(uy., z1., 145 Moy):
2: set2=0,6=0
oo 0 O
3: add 0 oo O to Q at x,
0 0 o
4: for all controls u, = (v, »,)" do
— 2 SiNp 1+ 2 SIN(—16 + @, AL)
5: =1+ ( :T’I COSit;—19 — ZT’/ CO(t;—19 + @, AL)
w, At
10 :)—'I COSit;—19 — ;—; COS( (119 + w; Al)
6: G,=| 0 1 ; Sinu,_ 19 — ; SiN(i,_16 + @, At)
00

see next page for continuation
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’ continued from the previous page

7 add( 1G ) R —G)toQatx, andx, ;
— Yy
. 1 g
8: add G, R [X +G, u,_1] to€ atx, and x,_,
9: endfor
10: for all measurements z, do
oo 0 O
0 0 o
12: for all observed features z: = (r/ ¢!)" do
13: j=c
14 (S:(ax):(ﬂj,x_ut,x)
8.\’ :uj,)' - Mt.y
15: qg=295"8
. s NG
16 = ( atanas, . s,) — i,
17: H[ 1 ﬁ&v _«/68)' 0 _\/a‘sx \/q(sy
’ toa 8, S, -1 -4 -8,
18: add H" Q7' H' toQ atx, andm;
Mt x
) ) ) _ My
19: add H" Q7' [z =2 —H'| e |1to& atx, andm;
/“Lj,x
Hij.y
20: endfor
21: endfor
22: return 2, &

in lines 5 and 6 represent the linear approximation of thieveen observed features and features in the map (line 13). At-
non-linear measurement functignAs is obvious from these tention has to be paid to the implementation of line 16, since
equations, this linearization step utilizes the pose estimati®e angular expressions can be shifted arbitrarily oy This
os—1, With uo = (0 0 0. This leads to the updates ff, calculation culminatesinthe computation of the measurement
andé, calculated in lines 7, and 8, respectively. Both termapdate in lines 18 and 19. The matrix that is being added to
are added into the corresponding rows and columigahd € in line 18 is of dimension 5 5. To add it, we decompose
&. This addition realizes the inclusion of a new constraint intd into a matrix of dimension 3 3 for the pose,, a matrix
the SLAM posterior, very much along the lines of the intuitiveof dimension 2x 2 for the featuren;, and two matrices of
description in the previous section. dimension 3x 2 and 2x 3 for the link between, andm;.
Measurements are integrated in lines 10 through 21 @hose are added @ at the corresponding rows and columns.
GraphSLAM _linearize. The matrix Q, calculated in line Similarly, the vector added to the information vectois of
11 is the familiar measurement noise covariance. Lines 1@rtical dimension 5. It is also chopped into two vectors of
through 17 compute the Taylor expansion of the measuremesize 3 and 2, and added to the elements corresponding to
function. This calculation assumiesown correspondence be- andm , respectively. The result dbraphSLAM_linearize
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is an information vectof and a matrix2. We already noted multiple times over the same data set. Each iteration takes

thatQ2 is sparse. It contains only non-zero sub-matrices alorgg an input an estimated mean veqtgr from the previous

the main diagonal, between subsequent poses, and betwieration, and outputs a new, improved estimate. The iterations

poses and features in the map. The running time of this afthe GraphSLAM optimization are only necessary when the

gorithm is linear ir, the number of time steps at which datanitial pose estimates have high error (e.g. more than 20 de-

was accrued. grees orientation error). A small number of iterations (e.g. 3)
The next step of the GraphSLAM algorithm pertains tas usually sufficient.

reducing the dimensionality of the information matrix/vector. Table 5 summarizes the resulting algorithm. It initializes

This is achieved through the algoritt@naphSLAM _reduce the means, then repeats the construction step, the reduction

in Table 3. This algorithm takes as inpf®t and & defined step, and the solution step. Typically, two or three iterations

over the full space of map features and poses, and outputsudfice for convergence. The resulting meas our best guess

reduced matrixX2 and vectorg defined over the space of all of the robot’s path and the map.

poses (but not the map!). This transformation is achieved by

removing features:; one at a time, in lines 4 through 9 of

GraphSLAM _reduce. The bookkeeping of the exactindexess, M athematical Derivation of GraphSLAM

of each item in2 and¢ is a bit tedious, hence Table 3 only

provides an intuitive account. The derivation of the GraphSLAM algorithm begins with
Line 5 calculates the set of poseg;j) at which the robot g derivation of a recursive formula for calculating the full

observed featurg. It then extracts two sub-matrices from thes| AM posterior, represented in information form. We then

present2: §2; ; ands2,; ;. €2; ; is the quadratic sub-matrix be- investigate each term in this posterior, and derive from them

tweenm; andm, and<,; ; is composed of the off-diagonal the additive SLAM updates through Taylor expansions. From

elements between; and the pose variableg ). It also ex-  that, we will derive the necessary equations for recovering the

tracts from the information state vectorthe elements cor- path and the map.

responding to the-th feature, denoted here s It then

subtracts information fror2 andé as stated in lines 6 and 7.

After this operation, the rows and columns for the feature 5.1. The Full SLAM Posterior

are zero. These rows and columns are then removed, reducing

the dimension o8 andé accordingly. This process is iterated!t Will be beneficial to introduce a variable for the augmented

until all features have been removed, and only pose variabiigte of the full SLAM problem. We will usg to denote state

remain in andé. The complexity ofGraphSLAM _reduce variables that combine one or more posesith the mapm.

is once again linear in In particular, we defing,, to be a vector composed of the path
The last step in the GraphSLAM algorithm computes th&: and the mapm, whereas), is composed of the momentary

mean and covariance for all poses in the robot path, andPg8se at time and the mam::

mean location estimate for all features in the map. This is

achievedthrougraphSLAM _solvein Table 4. Line 3 com- Xo

putes the path estimatgs, . This can be achieved by inverting X1

the reduced information matri2 and multiplying the result- Yo = : and y, = < X > (10)
ing covariance with the information vector, or by optimization x mn
techniques such as conjugate gradient descent. Subsequently, n;

GraphSLAM _solve computes the location of each feature in

lines 4 through 7. The return value GfraphSLAM_solve The posterior in the full SLAM problem isp(yo, |

contains the mean for the robot path and all features in the ). wherez,, are the familiar measurements with
map, but only the covariance for the robot path. L1z, Bas, Cat)y L

The quality of the solution calculated by the GraphSLA,\forrespondence&,, fandul:’ are .the controls. Bayes rule en-
) e ables us to factor this posterior:

algorithm depends on the goodness of the initial mean es-

timates, calculated b&raphSLAM _initialize. The x- and

y-components of these estimates affect the respective modeROo: | 2x: i, 1) (1)

in a linear way, hence the linearization does not depend on = 7 p(z: | Yous Zur-1, Y15 €1:) PYou | 2115 U C10)

these values. Not so for the orientation variableg.n Er-

rors in these initial estimates affect the accuracy of the Taylarheren is the familiar normalizer. The first probability on the

approximation, which in turn affects the result. right-hand side can be reduced by dropping irrelevant condi-
To reduce potential errors due to the Taylor approximatiotioning variables:

in the linearization, the procedur€ aphSLAM _linearize,

GraphSLAM _reduce, and GraphSLAM_solve are run Pz | You, Zoats Uris €)= pz | ync)  (12)
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Table 3. Algorithm for Reducing the Size of the Information Representation of the Posterior

in GraphSLAM

1 Algorithm GraphSLAM_reduce(€2, &):

2: Q=0Q

3 E=¢

4: for each feature j do

5: let T(j) be the set of all poses x, at which j was observed
6: subtract Q,;,; Q% & from& atx,;, andm,

7: subtract Q. ; Q% Q; ;) from Q at x,;, andm,

8: remove from 2 and & all rows/columns corresponding to j
9: endfor

10: return Q, §

Table 4. Algorithm for Updating the Posterior p

1: Algorithm GraphSLAM_solve($2, £, 2, £):

2:O:t = Q_l

Mo = ZO:t é

for each feature j do
set T(j) to the set of all poses x, at which j was observed
1y =55 & + Q) Beip)

endfor

return L, X,

Table5. The GraphSLAM Algorithm for the Full SLAM Problem with Known
Correspondence

1: Algorithm GraphSLAM _known_correspondence(u.., z1., C1.):

o, = GraphSLAM _initialize(u.,)

repeat
Q, & = GraphSLAM_linearize(uy,, z1., 14, Mo+)
Q, & = GraphSLAM_reduce(, £)
i, So, = GraphSLAM_solve($2, &, 2, &)

until convergence

return
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Similarly, we can factor the second probability by partitioningariance. In equations, we have:
Yo, iNto x, andy,,_;, and obtain:

P(xz | Xi—1, M,) (17)
P (Vo | Zau—1s Uy, C1y) (13) 1 -
e v =n expy—=(x, — g, x—))" R (x; — g(us, Xi-1))
= p | You-1s Zr-1> U1y C1:) P(YVor—1 | Zri—1, Uy, Cr) 2
= pQ; | x-1,u) pYou-1 | Zau-1, -1, C14-1) Pz | v ;) (18)

Putting these expressions back into (11) gives us the recursive= 7 exp{ —%(Zi —h(ye e, iN" O (2 — h(yi, ¢, i))}
definition of the full SLAM posterior:

The priorp(x,) in (16) is also easily expressed by a Gaussian-
(14) type distribution. lianchorsthe initial posex, to the origin of

it | Zues UL, Co .
PO | 201, hye, C12) the global coordinate systen; = (0 0 0):

= np@ly,c)
1
P | X1 u) p(You—a | Zaa1, Uay-1, C1y-1) pxo) = 7 exp{_E xoT o Xo} (19)

The closed form expression is obtained through induction ov@fith
t. Herep(y,) isthe prior over the magp and the initial pose,.

co 0 O
Q = 0 oo O (20)

Pou | Z1s Uy C1y) (15) 0 0 oo
=17 p(yo) Hp(x, | X1, u,) p(zi | yis ) For now, it does not concern us that the valuerofcannot

t be implemented, as we can easily substitutevith a large
_ . positive number. This leads to the following quadratic form
=npGo) [[|pGi | xau) []pGE v c) of the negative log-SLAM posterior in (16):

- |Og P()’o:z | L1y Uity cl:r) (21)
Here, as before; is thei-th measurementin the measurement 1
vectorz, at timer. The prior p(yo) factors into two indepen- = const+ 3 |:xoT Qo xo+ ) (x — gy, x, 1)
dent priors,p(xo) and p(m). In SLAM, we usually have no !
prior knowledge about the map. We simply replace(yo) R (o — g X))+ Y (@ = h(y. ¢ i)'
by p(xy) and subsume the factpi() into the normalizen. roi

0" (2 = h(y, ¢, i)]

This is essentially the same dgpnsiam iN €Q. (9), with a
few differences pertaining to the omission of normalization
constants (including a multiplication with1). Equation (21)
highlights an essential characteristic of the full SLAM poste-
rior in the information form: it is composed of a number of
guadratic terms, one for the prior, and one for each control

and each measurement.
Iog P()’o:z | L1y Uy cl:t) (16)

= const + log p(xo) 5.3. Taylor Expansion

5.2. The Negative Log Posterior

The information form represents probabilities in logarithmi
form. The log-SLAM posterior follows directly from the pre-
vious equation:

i 1 The various terms in eq. (21) are quadratic in the functipns
+ Y |logp(x, | xi1,u) + Y 10g (] | yir ) and#, not in the variables we seek to estimate (poses and the
! i map). GraphSLAM alleviates this problem byearizing g

~andh via Taylor expansion. In particular, we have:
As stated above, we assume the outcome of robot motion is

diStribUted norma”y according W(g(u,, xt—l)a Rz)u Whel'eg g(“ra xr—l) ~ g(utv //Lr—l) + g,(un /'Lt—l) ()C,,l - //Lr—l) (22)
is the deterministic motion function, amR] is the covariance T
of the motion error. Likewise, measuremenfsare gener- P P ,

. : ! . . hiy,c, i)~ h(u,,c,i) + h — 23
ated according toV' (h(y,, ¢!, i), Q,), whereh is the familiar O, €t 1) & A, €1, 1) & (= o) (23)
measurement function and, is the measurement error co- = H;
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Here u, is the current estimate of the state veciprand
H' = h! F,; for the projection matrix¥, ; as indicated.

This initialization is performed in lines 2 and 3 of the
algorithmGraphSLAM _linearize.

This linear approximation turns the log-likelihood (21) into

a function that is quadratic in, . In particular, we obtain:

(24)

1
Iog p(yO:I | L1y Uy, Cl:r) ConSt - E

x5 Qoxo+ » % — gy, pus) — G, (X — pp)l”

t
R [x — gy, 1) — Gy (ximy — 4-)]
+ ) 12— h(ui ¢l i) — H) (v — )]

Q;l [Z; — h(w,, Cia i) — H,i(yt - Mr)]}

This function is indeed a quadraticyg,, and it is convenient
to reorder its terms, omitting several constant terms.

|Og P()’o:; | L1y Uity Cl:t) = ConSt (25)
1

- = .XOT QOXO
——

2

quadratic inxg

1 1
- EZXtT—lzt ( -G

> R:l (1 - Gt) Xi—1:1

t

quadratic inx,_1.,

1 -
+x/4, ( G, ) R gy, us) + G phial

linear in x;_1.,
_1‘ T HiT Q—l Hi
2 Vi t t ¢ e
— ——
1 P
quadratic iny;,

0" [ — h(w,, ¢y i) — H ]

linear in y,

ol T

Herex,_,, denotes the vector concatenating andx,; hence
we canwrite(x, — G, x,_1)" =x,, (1 —G,)". [fwe collect
all quadratic terms into the matri®, and all linear terms into
a vectorg, we see that expression (24) is of the form:

1
|09P(yo;r | 21y Uy Cl:r) = const — ~ yoT; Q Yo + yoTt g (26)

2

5.4. Constructing the Information Form

We can read off these terms directly from (25), and verify

that they are indeed implemented in the algorit&Gmaph-
SLAM linearizein Table 2:

e Prior. The initial pose prior manifests itself by a

guadratic ternt2, over the initial pose variableg, in

« Controls. From (25), we see that each contiphdds to
Q andeg the following terms, assuming that the matrices
are rearranged so as to be of matching dimensions:

Q<_Q+<_1G )R,l(l -G) (28)
s(_E_|_( _1G ) R:l Le(u,, wi—1) + G, 4]

(29)

This is realized in lines 4 through 9 iGraph-
SLAM _linearize.

« Measurements. According to eq. (25), each measure-
mentz transformsQ andé by adding the following
terms, once again assuming appropriate adjustment of
the matrix dimensions:

Q«— Q+H"Q'H (30)
E<«—&+HT QM Z —h(w,c,i)— Hu] (31)

This update occurs in lines 10 through 21Gmnaph-
SLAM linearize.

This proves the correctness of the construction algorithm
GraphSLAM _linearize, relative to our Taylor expansion
approximation.

We also note that the steps above only affect off-diagonal
elements that involve at least one pose. Thus, all between-
feature elements are zero in the resulting information matrix.

5.5. Reducing the I nformation Form

The reduction stefsraphSLAM _reduce is based on a fac-
torization of the full SLAM posterior.

p(yO:r | 21y Uy Cl:r) = p(XO:t | L1y Uity Cl:t) (32)

p(m | X0:s iy Uity Cl:t)

Here p(xo, | z14, U1, c1,) ~ N(R, §) is the posterior over
paths alone, with the map integrated out:

P(XO:z | L1y Uy, Cl:[) - /P(yo:z | L1y ULy, Cl:t) dm (33)

As we will show shortly, this probability is indeed calculated
by the algorithnGraphSLAM _reducein Table 3, since
~ NEQ (34)

p(XO:t I 1y Ugs Cl:t)

the information matrix. Assuming appropriate exten-

sion of the matrix2, to match the dimension of,,, we
have:

In general, the integration in (33) will be intractable, due to the
large number of variables im. For Gaussians, this integral
can be calculated in closed form. The key insight is given by
the marginalization lemma for Gaussians, stated in Table 7.
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Table 6. The (Specialized) Inversion Lemma, Sometimes Called the Sherman/Morrison
Formula (seethe Appendix for a derivation)

I nver sion Lemma. For any invertible quadratic matric®andQ and any matrixP with appropriate
dimensions, the following holds true

(R+PQOQPHYY = R*—R'P(Q'+P R*P)*PTR?

assuming that all above matrices can be inverted as stated.

Table 7. Lemma for Marginalizing Gaussiansin Information Form. The Form of the
Covariance ,, in ThisLemma isAlso as Schur complement (a derivation can be found
in the Appendix).

Marginals of a multivariate Gaussian. Let the probability distributiorp(x, y) over the random
vectorsx andy be a Gaussian represented in the information form

_ Qoo 2y _ &
Q = (QV ny) and & = <§y>

If ©,, is invertible, the margingp(x) is a Gaussian whose information representation is

Q” = Q” — Qxy Q;;L ny and Ex = Sx — Qxy Q;l Sy

Let us subdivide the matri and the vectok into sub- eqgs (37) and (38) into a sequential update:
matrices, for the robot pathy., and the maw:

{2 = QXO::~~"0:1 - Z Q«“O:rvl- Q?i ; ij»’CO:r (41)

Q Q,
Q — X0:1-X0: X0:r,m 35
( Qm.xo;, Qm.m ) ( ) =
The matrix2,,, ; is non-zero only for elements in(;), the

e
I

E o= &0, =) Q4,908 (42)

According to themarginalization lemma, the probability (34) set of poses at which featujevas observed. This essentially
is obtained as proves the correctness of the reduction algorit@maph-
SLAM reduce in Table 3. The operation performed 6h
O Y Q*lm Dmega,, ., (37) inthis algorithm can be thought of as the variable elimination
E o= £ — Qw1 E, (38) algorithmformatrixinversi_on,applied to the feature variables
but not the robot pose variables.

el

The matrix<2,, ,, is block-diagonal. This follows from the way
Q is constructed, in particular the absence of any links b&:6. Recovering the Path and the Map

tween pairs of features. This makes the inversion efficient: , )
The algorithmGraphSLAM _solvein Table 4 calculates the

Ql = Z FT Q' F, (39) Mmean and variance of the Gaussiélits, €2):
! 5 Q- (43)
whereQ; ; = F;QF] is the sub-matrix of2 that corresponds i o= & (44)
to the j-th feature in the map, that is
In particular, this operation provides us with the mean of the
0---0 10 0---0 posterior on the robot path; it does not give us the locations
F, = 0---0 01 0---0 (40) ofthe features in the map.
i—th feature It remains to recover the second factor of eq. (32):

This insight makes it possible to decompose the implement p(m | Xoys Zar, Uz, C1) (45)
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Table 8. Lemmafor Conditioning Gaussiansin Information Form (a derivation can be found

in the Appendix)

QXX
Q

— Qyy
@ - (o)

yx

Q.

Conditionalsof amultivariate Gaussian. Let the probability distributiom (x, y) over the random
vectorsx andy be a Gaussian represented in the information form

and

The conditionalp(x | y) is a Gaussian with information matriX,, and information vecto§, +

= (¢)

The conditioning lemma, stated in Table 8, shows that thiscorrespondence vector, instead of calculating an entire distri-

probability distribution is Gaussian with the parameters
P Q. (46)
2:m (Em + Qm‘xo;,g) (47)

Hereg, and<, , are the sub-vector d¢f, and the sub-matrix

Mom

of , respectively, restricted to the map variables. The matr

@, ., is the off-diagonal sub-matrix a2 that connects the
robot path to the map. As noted befafxg,,, is block-diagonal,
hence we can decompose

p(m | X0ty L1:5 Uty Cl:t) = l_[ P(m/ | X0:t5 L1:45 Uts Cl:t) (48)

j
where eactp(m; | xo,, 21, 14, c1,) is distributed accord-
ing to
(49)
(50)

% = Q)]
i =2+ Q1) = Z;6 + Qi)

bution over correspondences. Thus, finding a correspondence
vector is a search problem. However, it proves convenient to
define correspondences slightly differently in GraphSLAM
than before: correspondences are defined over pairs of fea-
tures in the map, rather than associations of measurements to
If)((aatures. Specifically, we sayj, k) = 1 if m; andm, corre-
spond to the same physical feature in the world. Otherwise,
¢(j, k) = 0. This feature-correspondence is in fact logically
equivalent to the correspondence defined in the previous sec-
tion, but it simplifies the statement of the basic algorithm.

Our technique for searching the space of correspondences
is greedy, just as in the EKF. Each step in the search of the best
correspondence value leads to an improvement, as measured
by the appropriate log-likelihood function. However, because
GraphSLAM has access to all data at the same time, it is possi-
ble to devise correspondence techniques that are considerably
more powerful than the incremental approach in the EKF. In
particular:

The last transformation exploited the fact that the sub-matrix

Q; .. IS zero except for those pose variabtgg) from which
the j-th feature was observed.

It is important to notice that this is a Gaussiain |
Xos, Z145 U1y, C14) CONditioned on the true path,.,. In prac-

tice, we do not know the path, hence one might want to know 2.

the posteriop(m | 74, U1, c1,) Without the path in the condi-

tioning set. This Gaussian cannot be factored in the moments
parameterization, as locations of different features are cor-
related through the uncertainty over the robot pose. For this
reasonGraphSLAM _solvereturns the mean estimate of the
posterior but only the covariance over the robot path. Luckily,

1. At any point in the search, GraphSLAM can con-
sider the correspondence of any set of features. There
is no requirement to process the observed features
sequentially.

Correspondence search can be combined with the cal-
culation of the map. Assuming that two observed fea-
tures correspond to the same physical feature in the
world affects the resulting map. By incorporating such
a correspondence hypothesis into the map, other corre-
spondence hypotheses will subsequently look more or
less likely.

we never need the full Gaussian in moments representation—

which would involve a fully populated covariance matrix of
massive dimensions—as all essential questions pertaining to
the SLAM problem can be answered at least in approximation

without knowledge of:.

6. Data Association in GraphSLAM

3. Data association decisions in GraphSLAM can be un-
done. The goodness of a data association depends on
the value of other data association decisions. What ap-
pears to be a good choice early on in the search may, at
some later time in the search, turn out to be inferior. To
accommodate such a situation, GraphSLAM can effec-
tively undo a previous data association decision.

Data association in GraphSLAM is realized through corréAfe will now describe one specific correspondence search al-
spondence variables. GraphSLAM searches for a single bgstrithm that exploits the first two properties, but not the third.
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Our data association algorithm will still be greedy, and it willl4). As a result, subsequent correspondence tests factor in pre-
sequentially search the space of possible correspondencesitaus correspondence decisions though a newly constructed
arrive at a plausible map. However, like all greedy algorithmsnap. The map construction is terminated when no further fea-
our approach is subject to local maxima; the true space tfres are found in its inner loop.

correspondences is of course exponential in the number of Clearly, the algorithn@&raphSL AM is not particularly ef-
features in the map. Nevertheless, we will be content withfecient. In particular, it tests all feature pairs for correspon-
hill climbing algorithm. dence, not just nearby ones. Further, it reconstructs the map
whenever a single correspondence is found; rather than pro-
cessing sets of corresponding features in batch. Such modifi-
cations, however, are relatively straightforward. A good im-
plementation ofsraphSL AM will be more refined than our

The key component of our algorithm isli&elihood test for ~ basic implementation discussed here.

correspondence. Specifically, GraphSLAM correspondence

is based on a simple test: what is the probability that tw6.2. Mathematical Derivation of the Correspondence Test
different features in the map;; andm,, correspond to the

same physical feature in the world? If this probability exceed¥e essentially restrict our derivatipn to showing th_e correct?
a threshold, we will accept this hypothesis and merge bollESs of the correspondence test in Table 9. Our first goal is
features in the map to define a posterior probability distribution over a variable

The algorithm for the correspondence test is depicted fi/+ = " — "+ thedifference between the location of fea-
Table 9: the input to the test are two feature indexyeand twrem, and _featu_r mk'TWO fgature%n_, andm; are equivalent
k, for which we seek to compute the probability that thosg and only if their location is the same. Hence, by calculat-

two features correspond to the same feature in the physit’:'&qJ the posterior probal:_Ji.Iity O, We obtain the desired
correspondence probability.

world. To calculate this probability, our algorithm utilizes a btain th ior f by fi lculating the ioi
number of quantities: the information representation of the We obtainthe posteriorfak; . by firstcalculating the joint

SLAM posterior, as manifest b§ andé, and the result of the V€' andm,:
procedureGraphSLAM _solve, which is the mean vectqr
and the path covariancey, .

The_corrgspondence test then. prpceeds in the fOIIOWing = /P(m_/, my | X145 2045 C1a) P(X1a | 225 U, C1y) A X1y
way. First, it computes the marginalized posterior over the

two target features. This posterior is represented by the ifye il denote the information form of this marginal posterior
formation matrix<;;; and vectorg;;, computed in lines 2 . and,,,,. Note the use of the squared brackets, which

and 3 in Table 9. This step of the computation utilizes Vario%istinguish these values from the sub-matrices of the joint
sub-elements of the information forfy, &, the mean feature ntormation form.

locations as specified through and the path covarian, . The distribution (51) is obtained from the joint posterior

Ne>.<t, it calculates the parametgrs of a new Gaussian rand%%ryo:“ by applying the marginalization lemma. Specifically,
variable, whose value is the difference betwegnandm.. ¢ ande represent the joint posterior over the full state vector
Denoting the difference variable; , = m; —m,, theinforma- |, iy information form, andr(j) andz (k) denote the sets
tion parametersy; «, &4, are calculated inlines 4 and 5, andos hoses at which the robot observed featjirand featurd,
_the_corresp.onding expectation for thg_difference is _Comp”t?gspectively. GraphSLAM gives us the mean pose VeL{do
in line 6. Line 7 rgturns the probability that the dlfferenceapmy the marginalization lemma (Table 7), we shall leverage
betweerm, andm, is zero. , _ _the result of the algorithrBraphSLAM _solve. Specifically,
The correspondence test provides us with an algorithgg, ;ohs| AM_solve provides us with a mean for the features

for performing data association search in GraphSLAM. T%j andm,. We simply restate the computation here for the
ble 10 shows such an algorithm. It initializes the corresporjléint feature pair:

dence variables with unique values. The four steps that follow

(lines 3-7) are the same as in our GraphSLAM algorithm with Wi = Q]fkj:jk En+ Qieiotein) (52)

known correspondence, stated in Table 5. However, this gen-

eral SLAM algorithm then engages in the data associatidteret(j, k) = t(j) U 7 (k) denotes the set of poses at which

search. Specifically, for each pair of different features in thihe robot observea; or m,.

map, it calculates the probability of correspondence (line 9 For the joint posterior, we also need a covariance. This

in Table 10). If this probability exceeds a threshgldthe covariance isxot computed inGraphSLAM _solve, simply

correspondence vectors are set to the same value (line 11pecause the joint covariance over multiple features requires
The GraphSLAM algorithm iterates the construction, respace quadratic in the number of features. However, for pairs

duction, and solution of the SLAM posterior (lines 12 througlof features the covariance of the joint is easily recovered.

6.1. The GraphSLAM Algorithm with Unknown
Correspondence

p(mj, my | Zas, Uiy, C1o) (51)
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Table9. The GraphSLAM Test for Correspondence: It Acceptsas | nput an Information
Representation of the SLAM Posterior, Along with the Result of the GraphSLAM _solve Step.
It Then Outputsthe Posterior Probability That m; Correspondsto m;.

1:

Algorithm GraphSLAM _correspondence test(2, &, i, Xo., j, k):

Qi = Qiejk — ik ZeGib.eGih Leibyjk
Ejn = Spim Mk

T
QAjk=< ! ) Q[/kl< ! )
J, 1 J. 1

1 T
%_Aj,k = ( _1 > g[j.k]

—1
Hajx = Q4 Eajk
-1 -1 1 -1
return |2 Q%172 exp{-3 Majx Paj Waji}

Table 10. The GraphSLAM Algorithm for the Full SLAM Problem with Unknown
Correspondence. Theinner loop of thisalgorithm can be made more efficient by selective
probing feature pairsm;, m;, and by collecting multiple cor respondences before solving
the resulting collapsed set of equations.

L

11:
12:
13:
14.
15:
16:
17:
18:

Algorithm GraphSLAM (11, z1.):

initialize all ¢ with a unique value
o, = GraphSLAM _initialize(u,,)
Q, & = GraphSLAM_linearize(uy,, z1., c1.1, o)
Q, & = GraphSLAM_reduce(2, &)
I, o, = GraphSLAM_solve(Q2, &, Q, &)
repeat
for each pair of non-corresponding features m;, m; do
;- = GraphSLAM_correspondence test
(2,8, 1, Zou, J, k)
ifmw;_, > x then
forallc! =k setc! = j
Q, & = GraphSLAM_linearize(uy,, z1., c1., Hos)
Q, & = GraphSLAM_reduce(S2, &)
w, Lo, = GraphSLAM_solve(Q, &, Q, &)
endif
endfor
until no more pair m;, m; found with w;_, < x

return (L
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Let =, 4.1 De the sub-matrix of the covariangg, re-  useful to rewrite this Gaussian in moments parameterization:
stricted to all poses in(j, k). Here the covariancg,, is cal-
culated in line 2 of the algorithr&raphSLAM _solve. Then P(Ajk | 204y Unys C1y) (58)
the marginalization lemma provides us with the marginal in- - |25 Q;Mf%
formation matrix for the posterior ovém ; m;)”: 1
exp{—— (Aj — paji)" Q;_,l;k (A — MAj,k)}
Qun = Qi — Qreiw Zeoch Leguge (53) 2

. . . . .where the mean is given by the obvious expression:
The information form representation for the desired posterior

is now completed by the following information vector: taje = QL Eaj (59)
J Y. J s
S = Quu Mya (54) These steps are found in lines 4 through 6 in Table 9.
o The desired probability fon ;, = 0 is the result of plug-
Hence for the joint we have: ging O into this distribution, and reading off the resulting prob-
ability:
P(mj, My | Zyg, Uz, Cry) (55) .
1/ m. \’ m PN =01 244, uyy, c1y) = |2 Q;},kl‘? (60)
= nexp —z(mi> Q[jk](mi) 1, .
exp{_é I‘LAJ;k QAj,k /J«Aj,k}
m; \
+ ( mz ) EU’H} This expression is the probability that two features in the map,

m; andm,, correspond to the same features in the map. This

These equations are identical to lines 2 and 3 in Table 9. Calculation is implemented in line 7 in Table 9.

The useful thing about our representation is that it imme-
diately lets us define the desired correspondence probability.
For that, let us consider the random variable:

7. Results
Ay = m; — my (56)
1N [ m We conducted a number of experiments, all with the robot
= ( 1 ) ( m’ ) shownin Figure 4. In particular, we mapped a number of urban
. g sites, including NASA's Search and Rescue Facility DART
_ m; 1 and a large fraction of Stanford’s main campus; snapshots of
- ( my ) ( -1 ) these experiments will be discussed below.

Our experiments either involved the collection of a sin-
Plugging this into the definition of a Gaussian in informatioryle large dataset, or a number of datasets. The latter became
representation, we obtain: necessary since for the environments of the size studied here,
the robot possesses insufficient battery capacity to collect all
P(Aji | 22y Uy, C1) (57)  data within a single run. In most experiments, the robot is
controlled manually. This is necessary because the urban en-
1 1\’ 1 vironments are usually populated with moving objects, such
= nexp —EAJT-,k ( 1 ) Qi ( 1 ) Aji as cars, which would otherwise run the danger of colliding
with our robot. We have, on several occasions, used our navi-
= Qajk gation package Carmen (Montemerlo, Roy, and Thrun 2003)
to drive the robot autonomously, validating the terrain analysis
1\’ techniques discussed above.
+ A;k ( _1 ) €l Our research has led to a number of results. A primary
- finding is that with our representation, maps with more than
= fajk 10 variables can be computed quickly, even under multiple
1., r ! loop-closure constraints. The time for thinning the network
= exp{—é A Raiu + B8y éAf-k} into its skeleton tends to take linear time in the number of
robot poses, which is the same order as the time required for
which is Gaussian with the information matiix,;, and in- data collection. We find that scan matching is easily achieved
formation vectog,; , as defined above. To calculate the probin real-time, as the robot moves, using a portable laptop com-
ability that this Gaussian assumes the valuagf = 0, itis  puter. This is a long-known result for horizontally mounted
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GPS SATS

Fig. 5. Data acquisition through a two-directional scanning laser (the blue stripe indicates a vertical scan). The coloring
indicates the result of terrain analysis: The ground surface is colored in green, obstacles are red, and structure above the
robot’s reach are shown in white.

laser range finders, but it is reassuring that the same applas system. All maps are substantially larger than previously
to the more difficult scan matching problem involving a vertisoftware could handle, all are constructed with some GPS in-
cally panning scanner. More importantly, the relaxation of thiormation. The map shown on the top in Figure 7 corresponds
pose potentials takes in the order of 30 seconds even for tieeStanford’s main campus; the one on the bottomis anindoor-
largest data setused in our research, of an area 600 m by 8008udoor map of the building that houses the computer science
in size, and with a dozen cycles. This suggests the appropriatiepartment.
ness of our representation an algorithms for large-scale urbanThe key result of improved indoor maps through combin-
mapping. ing indoor and outdoor mappingisillustrated in Figure 6. Here
The second result pertains to the utility of GPS data fowe show 2-D slices of the 3-D map in Figure 7 using SLAM
indoor maps. GPS measurements are easily incorporated intaler two different conditions: In the map on the top, the in-
GraphSLAM,; they form yet another arc in the graph of condoor map is constructed independently of the outdoor map,
straints. We find thatindoor maps become more accurate whehereas the bottom map is constructed jointly. As explained,
some of the data is collected outdoors, where GPS measultee joint construction lets GPS information affect the building
ments are available. Below, we will discuss an experimentaiterior through the sequence of potentials liking the outdoor
shapshot that documents this result. to the indoor. As this figure suggests, the joint indoor-outdoor
Experimental snapshots can be found in Figures map is significantly more accurate; in fact, the building pos-
through 8. Figures 7 and 8 show some of the maps acquired$gsses a right angle at its center, which is well approximated.
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Fig. 6. Indoor mapping. Top: just based on the IMU and SLAM. Bottom: factoring in GPS data acquired outdoors. This
experiment highlights the utility of our hybrid SLAM algorithm that factors in GPS measurements as available.
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Fig. 7. Top: A map of Stanford University’s main campus, whose diameter is approximately 600 meters. Bottom: 3-D map of
the Gates Computer Science building and the surrounding terrain.
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o {3, _g;‘;

ed }-W *-d:.‘r"'g-h
Fig. 8. Visualization of the NASA Ames ARC Disaster Assistance and Rescue Team training site in Moffett Field, CA. This
site consist of a partially collapsed building with two large observation platforms.

8. Conclusion to a sparse spring-mass system. The key innovation in this
paper is the reduction step, through which the problem of in-
We presented the GraphSLAM algorithm, which solves a sp&erence in this graphical model becomes manageable. This
cific version of the SLAM problem, called the offline problemstep is essential in achieving scalability in offline SLAM.
(or full SLAM problem). The offline problem is characterized Experimental results in large-scale urban environments
by a feasibility to accumulate all data during mapping, anghow that the GraphSLAM approach indeed leads to viable
resolve this data into a map after the robot's operation is cormaps. Our experiments show that it is relatively straightfor-
plete. GraphSLAM achieves the latter by mapping the datsard to include other information sources—such as GPS—
into a sparse graph of constraints, which are then mappido the SLAM problem, by defining appropriate graphical
into an information form representation using linearizatiogonstraints. For example, we were able to show that through
through Taylor expansion. The information form is then rethe graphical model, GPS data acquired outside a build-
duced by applying exact transformations, which remove thg structure could be propagated into the building interior,
map variables from the optimization problem. The resultinthereby improving the accuracy of an interior map.
optimization problem is solved via a standard optimization GraphSLAM is characterized by a number of limitations.
technique, such as conjugate gradient. GraphSLAM recovedsie arises from the assumption of independent Gaussian
the map from the pose estimate, through a sequence of deise. Clearly, real-world noise is not Gaussian and, more
coupled small-scale optimization problems (one per featuréjnportantly, it is not independent. We find in practice that this
Iteration of the linearization and optimization technigue yieldproblem can be alleviated by artificially increasing the covari-
accurate maps in environments withf f8atures or more. ance of the noise variables, which reduces the information
The GraphSLAM algorithm follows a rich tradition of pre- available for SLAM. However, such methods are somewhat
viously published offline SLAM algorithms, which are allad-hoc; see Guivant and Masson (2005) for further treatment
based on the insight that the full SLAM problem correspondsf non-Gaussian noise.
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GraphSLAM is also limited in its reliance on a good initialMarginals of a Multivariate Gaussian

estimate of the map, computed in Table 1. As the total number ) o o
of time steps increases, the accuracy of the odometry-bas-gbe marginal for a Gaussian in its moments parameterization
initial guess will degrade, leading to an increased number of

data association errors. GraphSLAM, as formulated in this y» — ( T Xy ) and u = < M >
paper, will eventually diverge because of this initial pose es- T Xy Ky
timation step. However, the data set may often be broken into o ) ) ) )
pieces, forwhich SLAM can be performed individually befordS V (i+, Zx.)- By definition, the information matrix of this

; ] _ _ o S o . . )
pasting together the total setofconstramts.Suchah|erarch|§1‘?luss'an IS theref?r@t{, and the information vector is
computation is subject of future research. X, e We shows = Q. via the Inversion Lemma from

Another limitation pertains to the matrix inversion in Ta_TabIe 6; this derivation makes the assumption that none of the

ble 4. This inversion can be painfully slow; and optimizatioP@rticipating matrices is singular. Lét = (0 1)7, and let
methods such as conjugate gradient (as brought to bear in &2f) P& @ matrix of the same size &, but whose entries are
experiments, can be much more efficient. allinfinite (and with[co]™* = 0. This gives us

More broadly, there remain a number of open questions »
that warrant future research. Chief among them is the dev%bJr Ploo]PT)! :( Qe Q2 ) ) ( o 0 )
opment of SLAM techniques that can handle basic building Q. [o0] 0 O
elements, such as walls, windows, roofs, and so on. Graph-
SLAM makes a static world assumption, and more researdie same expression can also be expanded by the inversion
is needed to understand SLAM in dynamic environments (s¢é&mma into:
Hahnel, Schulz, and Burgard 2003; Wang, Thorpe, and Thrun
2003 for notable exceptions). Finally, bridging the gap be<2 + P[oo]P")™*
tween online and offline SLAM algorithm is a worthwhile Q-QP(oo]*+PTQP)TPIQ
goal of future research. Q-QPO+P QP P Q

Q-QPQ,) P’ Q

Appendix: Derivations _ ( Q. Q. >_< Q. Q )( 0 O )
. . . . . . Q\’X Q)')' Q}'x Q,V,V 0 Q;yl
The derivations in this section are standard textbook material. g g
xx xy
. . ( ny ny >
Derivation of the I nversion Lemma “ ( Q. Q, >_< 0 Q. Q;)l >< Q. Q, )
Definew = (0! + P” R~! P)~L. It suffices to show that Qe 0 1 Qo Qy
Qx,\' QX\ Qxy 971 Q )X Q,\‘y
This is shown through a series of transformations: = ( 0 g )

= R'R+R*'PQOQP" — R*PUP'R'R B
T T The remaining statemeng ' n, = &,, is obtained analo-
—R'PUP RIPQP! gously, exploiting the fact that = Q¢ and the equality of

the two expressions marke@«)” above:
= I +R*'PQP" —R*PU P P @)

—R'PWP R'PQP Siu\ (320 (L,
= I+ R'P[QPT ( 0 ) B < 0 0)(%)

—w Pl — wPTRTP QP _ <E,xl 0>Ql(§x>
= I +R'P[QP" — W Q'Q P 0 0 &

N (3R e ()

—w PTRTP QP 0 1 13

= I+ R'P[QP" — WU QP _ (&) _ (0 @, &,
— - g 0 1 £,

- I~|—R*1P[QPT—Q7PT]=1 <€>
\—/—/ 0
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