
Sebastian Thrun
Michael Montemerlo
Stanford AI Lab
Stanford University
{thrun,mmde}@stanford.edu

The GraphSLAM
Algorithm with
Applications to
Large-Scale Mapping
of Urban Structures

Abstract

This article presents GraphSLAM, a unifying algorithm for the offline
SLAM problem. GraphSLAM is closely related to a recent sequence
of research papers on applying optimization techniques to SLAM
problems. It transforms the SLAM posterior into a graphical net-
work, representing the log-likelihood of the data. It then reduces this
graph using variable elimination techniques, arriving at a lower-
dimensional problems that is then solved using conventional opti-
mization techniques. As a result, GraphSLAM can generate maps
with 108 or more features. The paper discusses a greedy algorithm
for data association, and presents results for SLAM in urban envi-
ronments with occasional GPS measurements.

KEY WORDS—SLAM, robot navigation, localization,
mapping

1. Introduction

In recent years, there have been a number of projects seeking
to map physical environments with moving sensor platforms.
Classical work includes mapping from the air (Konecny
2002), the ground (Elfes 1987; Moravec 1988), and under-
water (Williams, Dissanayake, and Durrant-Whyte 2001). It
includes indoor (El-Hakim et al. 1997; Iocchi, Konolige, and
Bajracharya 2000), outdoor (Teller et al. 2001), and subter-
ranean mapping (Baker et al. 2004). The development of tech-
niques for the acquisition of such maps has been driven by
a number of desires. They include photo-realistic rendering
(Allen and Stamos 2000; Bajcsy, Kamberova, and Nocera
2000), surveillance (Wang, Thorpe, and Thrun 2003), scien-
tific measurement (Baker et al. 2004), and robot guidance
(Williams, Dissanayake, and Durrant-Whyte 2001). Not sur-

The International Journal of Robotics Research
Vol. 25, No. 5–6, May–June 2006, pp. 403-429
DOI: 10.1177/0278364906065387
©2006 SAGE Publications
Figures appear in color online: http://ijr.sagepub.com

prisingly, some of the primary work in this area has emerged
from a number of different scientific fields, such as pho-
togrammetry, computer vision (Tomasi and Kanade 1992;
Pollefeys, Koch, and Gool 1998; Soatto and Brockett 1998),
computer graphics (Levoy 1999; Rusinkiewicz and Levoy
2001), and robotics (Dissanayake et al. 2001).

In the SLAM community (SLAM is short for simultaneous
localization and mapping), filter techniques such as the well-
studied extended Kalman filter (EKF) have become a method
of choice for model acquisition. The EKF was introduced
mathematically by Cheeseman and Smith (1986), and imple-
mented by Moutarlier and Chatila (1989a). This research has
led to hundreds of extensions in recent years. Some of these
approaches map the posterior into sparse graphical structures
(Bosse et al. 2003; Paskin 2003; Thrun et al. 2002), to gain
computational efficiency in the filtering process.

However, a key disadvantage of a filter technique is that
data is processed and then discarded. This makes it impos-
sible to revisit all data at the time of map building. Offline
techniques, introduced by Lu and Milios (1997) and a number
of follow-up papers (Golfarelli, Maio, and Rizzi 1998; Duck-
ett, Marsland, and Shapiro 2000; Frese and Hirzinger 2001;
Konolige 2004), offer improved performance by memorizing
all data and postponing the mapping process until the end. Fol-
lowing observations in Golfarelli, Maio, and Rizzi (1998), the
posterior of thefull SLAM problem naturally forms asparse
graph. This graph leads to a sum of nonlinear quadratic con-
straints. Optimizing these constraints yields a maximum like-
lihood map and a corresponding set of robot poses.

This article represents a novel algorithm for mapping us-
ing sparse constraint graphs, calledGraphSLAM. The basic
intuition behind GraphSLAM is simple: GraphSLAM extracts
from the data a set of soft constraints, represented by a sparse
graph. It obtains the map and the robot path by resolving these
constraints into a globally consistent estimate. The constraints
are generally nonlinear, but in the process of resolving them
they are linearized and the resulting least squares problem is

403

404 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

solved using standard optimization techniques. We will de-
scribe GraphSLAM both as a technique for building a sparse
graph of nonlinear constraints, and as a technique for popu-
lating a sparse “information” matrix of linear constraints.

When applied to large-scale mapping problems, we find
that GraphSLAM can handle large number of features, and
even incorporate GPS information into the mapping process.
These findings are based on data acquired by a mobile robot
system built to acquire 3-D maps of large-scale urban envi-
ronments.

This article is organized as follows. We begin with an ex-
tended review of the literature. We then describe GraphSLAM
intuitively, and characterize it both using graph-theoretical
and information-theoretical terms. We state the basic algo-
rithm and derive it mathematically from first principles. We
then extend to address the data association problem. Finally,
we present experimental results and discuss future extensions
of this approach.

2. Related Work

In robotics, the SLAM problem was introduced through a sem-
inal series of papers by Cheeseman and Smith (1986); Smith
and Cheeseman (1986); Smith, Self, and Cheeseman (1990).
These papers were the first to describe the well-known EKF
SLAM algorithm, often used as a benchmark up to the present
day. The first implementations of EKF SLAM were due to
Moutarlier and Chatila (1989a,b) and Leonard and Durrant-
Whyte (1991), some using artificial beacons as landmarks.
Today, SLAM is a highly active field of research, as a recent
workshop indicates (Leonard et al. 2002).

The first mention of relative, graph-like constraints in the
SLAM literature goes back to Cheeseman and Smith (1986)
and Durrant-Whyte (1988), but these approaches did not per-
form any global relaxation, or optimization. The algorithm
presented in this paper is loosely based on a seminal paper by
Lu and Milios (1997). They were historically the first to rep-
resent the SLAM prior as a set of links between robot poses,
and to formulate a global optimization algorithm for gener-
ating a map from such constraints. Their original algorithm
for globally consistent range scan alignment used the robot
pose variables as the frame of reference, which differed from
the standard EKF view in which poses were integrated out.
Through analyzing odometry and laser range scans, their ap-
proach generated relative constraints between poses that can
be viewed as the edges in GraphSLAM; however, they did not
phrase their method using information representations. Lu and
Milios’s (1997) algorithm was first successfully implemented
by Gutmann and Nebel (1997), who reported numerical insta-
bilities, possibly due to the extensive use of matrix inversion.
Golfarelli, Maio, and Rizzi (1998) were the first to establish
the relation of SLAM problems and spring-mass models, and
Duckett, Marsland, and Shapiro (2000, 2002) provided a first
efficient technique for solving such problems. The relation
between covariances and the information matrix is discussed

in Frese and Hirzinger (2001). Araneda (2003) developed a
more detailed elaborate graphical model.

The Lu and Milios algorithm initiated a development of of-
fline SLAM algorithms that up to the present date runs largely
parallel to the EKF work. Gutmann and Konolige combined
their implementation with a Markov localization step for es-
tablishing correspondence when closing a loop in a cyclic en-
vironment. Bosse et al. (2003, 2004) developed Atlas, which
is a hierarchical mapping framework based on the decoupled
stochastic mapping paradigm, which retains relative informa-
tion between submaps. It uses an optimization technique sim-
ilar to the one in Duckett, Marsland, and Shapiro (2000) and
GraphSLAM when aligning multiple submaps. Folkesson and
Christensen (2004a,b) exploited the optimization perspective
of SLAM by applying gradient descent to the log-likelihood
version of the SLAM posterior. TheirGraphical SLAM algo-
rithm reduced the number of variables to the path variables—
just like GraphSLAM—when closing the loop. This reduction
(which is mathematically an approximation since the map is
simply omitted) significantly accelerated gradient descent.

Konolige (2004) and Montemerlo and Thrun (2004) intro-
ducedconjugate gradient into the field of SLAM, which is
known to be more efficient than gradient descent. Both also
reduced the number of variables when closing large cycles,
and report that maps with 108 features can be aligned in just a
few seconds. Frese, Larsson, and Duckett (2005) analyzed the
efficiency of SLAM in the information form, and developed
highly efficient optimization techniques using multi-grid op-
timization techniques. They reported speedups of several or-
ders of magnitude; the resulting optimization techniques are
presently the state-of-the-art.

It should be mentioned that the intuition to maintain rela-
tive links between local entities is at the core of many of the
submapping techniques discussed in the previous section—
although it is rarely made explicit. Authors such as Guivant
and Nebot (2001), Williams (2001), Bailey (2002) and Tardós
et al. (2002) report data structures for minuting the relative
displacement between submaps, which are easily mapped to
information theoretic concepts. While many of these algo-
rithms are filters, they nevertheless share a good amount of
insight with the graphical information form discussed in this
paper.

To our knowledge, the GraphSLAM algorithm presented
here has never been published in the present form. However,
GraphSLAM is closely tied to the literature reviewed above,
building on Lu and Milios’s (1997) seminal algorithm. The
nameGraphSLAM bears resemblance to the nameGraphical
SLAM by Folkesson and Christensen (2004a); we have chosen
it for this paper because graphs of constraints are the essence
of this entire line of SLAM research. A number of authors
have developedfilters in information form, which address the
online SLAM problem instead of the full SLAM problem.
These algorithms will be discussed in the coming paper, which
explicitly addresses the problem of filtering.

Thrun and Montemerlo / The GraphSLAM Algorithm 405

Graph-like representations have also been applied in the
context of SLAM filtering algorithms. In 1997, Csorba devel-
oped an information filter that maintained relative informa-
tion between triplets of three landmarks. He was possibly the
first to observe that such information links maintained global
correlation information implicitly, paving the way from algo-
rithms with quadratic to linear memory requirements. New-
mann (2000) and Newman and Durrant-Whyte (2001) devel-
oped a similar information filter, but left open the question
of how the landmark-landmark information links are actu-
ally acquired. Under the ambitious name ‘consistent, conver-
gent, and constant-time SLAM,’ Leonard and Newman fur-
ther developed this approach into an efficient alignment al-
gorithm, which was successfully applied to an autonomous
underwater vehicle using synthetic aperture sonar (Newman
and Rikoski 2003). Another seminal algorithm in the field is
Paskin’s (2003)thin junction filter algorithm, which repre-
sents the SLAM posterior in a sparse network known as thin
junction trees (Pearl 1988; Cowell et al. 1999). The same idea
was exploited by Frese (2004), who developed a similar tree
factorization of the information matrix for efficient inference.
Julier and Uhlmann (2000) developed a scalable technique
calledcovariance intersection, which sparsely approximates
the posterior in a way that provable prevents overconfidence.
Their algorithm was successfully implemented on NASA’s
MARS Rover fleet (Uhlmann, Lanzagorta, and Julier 1999).
The information filter perspective is also related to early work
by Bulata and Devy (1996), whose approach acquired land-
mark models first in local landmark-centric reference frames,
and only later assembles a consistent global map by resolving
the relative information between landmarks. Another online
filter related to this work is the SEIF algorithm, which was
developed by Thrun et al. (2002). A greedy data association
algorithm for SEIFs was developed by Liu and Thrun (2003),
which was subsequently extended to multi-robot SLAM by
Thrun and Liu (2003). A branch-and-bound data association
search is due to Hähnel et al. (2003), based on earlier branch-
and-bound methods by Lawler and Wood (1966) and Naren-
dra and Fukunaga (1977). It parallels work by Kuipers et al.
(2004), who developed a similar data association technique,
albeit not in the context of an information theoretic concepts.
Finally, certain ‘offline’ SLAM algorithms that solve the full
SLAM problem, such as the ones by Bosse et al. (2004),
Gutmann and Konolige (2000), and Frese (2004), have been
shown to be fast enough to run online on limited-sized data
sets. None of these approaches address how to incorporate
occasional GPS measurements into SLAM.

3. Mapping SLAM Problems into Graphs

3.1. The Offline SLAM Problem

We begin our technical exposition with the basic notation used
throughout this article. In SLAM, time is usually discrete, and
t labels the time index. The robot pose at timet is denotedxt ;

we will usex1:t to denote the set of poses from time 1 all the
way to timet . The world itself is denotedm, wherem is short
for map. The map is assumed to be time-invariant, hence we
do not use a time index to denote the map. In this paper, we
think of the map of a (large) set of featuresmj .

To acquire an environment map, the robot is able to sense.
The measurement at timet is denotedzt . Usually, the robot
can sense multiple features at each point in time; hence each
individual measurement beam is denotedzi

t
. Commonly, one

assumes thatzi
t

is a range measurement. The measurement
function h describes how such a measurement comes into
being:

zi

t
= h(xt , mj , i)+ εi

t
(1)

hereεi
t
is a Gaussian random variable modeling the measure-

ment noise, with zero mean and covarianceQt , andmj is the
map feature sensed by thei-th measurement beam at timet .
Put differently, we have

p(zi

t
| xt , m) = const. exp−1

2
(zi

t
− h(xt , mj , i))

T

Q−1
t

(zi

t
− h(xt , mj , i)) (2)

Some robotic systems are also are provided with a GPS sys-
tem. Then the measurement is of the form

zi

t
= h(xt , i)+ εi

t
(3)

wherezi
t

is a noisy estimate of the posext , andεi
t

is once
again a Gaussian noise variable The mathematics for such
measurements are analogous to those of nearby features; and
GraphSLAM admits for arbitrary measurement functionsh.

Finally, the robot changes its pose in SLAM by virtue of
issuing control commands. The control asserted between time
t−1 and timet is denotedut . The state transition is governed
by the functiong:

xt = g(ut , xt−1)+ δt (4)

whereδt ∼ N (0, Rt) models the noise in the control com-
mand. The functiong can be thought of as the kinematic
model of the robot. Equation (4) induces the state transition
probability

p(xt | ut , xt−1) = const. exp−1

2
(xt − g(ut , xt−1))

T

R−1
t

(xt − g(ut , xt−1)) (5)

The offline SLAM posterior is now given by the following
posterior probability over the robot pathxt :1 and the mapm:

p(x1:t , m | z1:t , u1:t) (6)

This is the posterior probability over the entire pathx1:t along
with the map, instead of just the current posext : We note that

406 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

in many SLAM problems, it suffices to determine the mode
of this posterior. The actual posterior is usually too difficult
to express for high-dimensional mapsm, since it contains
dependencies between any pair of features inm.

We note that a key assumption in our problem formula-
tion is the assumption of independent Gaussian noise. Graph-
SLAM shares this assumption with the vast majority of pub-
lished papers in the field of SLAM. The Gaussian noise as-
sumption proves convenient in that it leads to a nice set of
quadratic equations which can be solved efficiently. Other
SLAM approaches have relaxed this assumption (Montemerlo
et al. 2002) or made special provisions for incorporating non-
Gaussian noise into Gaussian SLAM (Guivant and Masson
2005).

3.2. GraphSLAM: Basic Idea

Figure 1 illustrates the GraphSLAM algorithm. Shown there
is the graph that GraphSLAM extracts from four poses labeled
x1, . . . , x4, and two map featuresm1, m2. Arcs in this graph
come in two types: motion arcs and measurement arcs. Motion
arcs link any two consecutive robot poses, and measurement
arcs link poses to features that were measured there. Each
edge in the graph corresponds to a nonlinear constraint. As
we shall see later, these constraints represent the negative log
likelihood of the measurement and the motion models, hence
are best thought of asinformation constraints. Adding such a
constraint to the graph is trivial for GraphSLAM; it involves
no significant computation. The sum of all constraints results
in a nonlinearleast squares problem, as stated in Figure 1.

To compute a map posterior, GraphSLAM linearizes the set
of constraints. The result of linearization is a sparse informa-
tion matrix and an information vector. The sparseness of this
matrix enables GraphSLAM to apply the variable elimination
algorithm, thereby transforming the graph into a much smaller
one only defined over robot poses. The path posterior map is
then calculated using standard inference techniques. Graph-
SLAM also computes a map and certain marginal posteriors
over the map; the full map posterior is of course quadratic in
the size of the map and hence is usually not recovered.

3.3. Building Up the Graph

Suppose we are given a set of measurementsz1:t with associ-
ated correspondence variablesc1:t , and a set of controlsu1:t .
GraphSLAM turns this data into a graph. The nodes of this
graph are the robot posesx1:t and the features in the map
m = {mj }. Each edge in the graph corresponds to an event:
a motion event generates an edge between two robot poses,
and a measurement event creates a link between a pose and a
feature in the map. Edges represent soft constraints between
poses and features in GraphSLAM.

For a linear system, these constraints are equivalent to en-
tries in an information matrix and an information vector of

a large system of equations. As usual, we will denote the in-
formation matrix by� and the information vector byξ . As
we shall see below, each measurement and each control leads
to a local update of� andξ , which corresponds to a local
addition of an edge to the graph in GraphSLAM. In fact, the
rule for incorporating a control or a measurement into� and
ξ is a local addition, paying tribute to the important fact that
information is an additive quantity.

Figure 2 illustrates the process of constructing the graph
along with the corresponding information matrix. First con-
sider a measurementzi

t
. This measurement provides informa-

tion between the location of the featurej = ci
t
and the robot

posext at timet . In GraphSLAM, this information is mapped
into a constraint betweenxt andmj . We can think of this edge
as a (possibly degenerate) “spring” in a spring-mass model.
As we shall see below, the constraint is of the type:

(zi

t
− h(xt , mj , i))

T Q−1
t

(zi

t
− h(xt , mj , i)) (7)

Hereh is the measurement function, andQt is the covariance
of the measurement noise. Figure 2(a) shows the addition
of such a link into the graph maintained by GraphSLAM.
Note that the constraint may bedegenerate, that is, it may not
constrain all dimensions of the robot posext . This will be of
no concern for the material yet to come.

In information form, the constraint is incorporated into�

andξ by adding values between the rows and columns con-
nectingxt−1 andxt .The magnitude of these values corresponds
to the stiffness of the constraint, as governed by the uncertainty
covarianceQt of the motion model. This is illustrated in Fig-
ure 2(b), which shows the link between two robot poses along
with the corresponding element in the information matrix.

Now consider robot motion. The controlut provides in-
formation about the relative value of the robot pose at time
t − 1 and the pose at timet . Again, this information induces
a constraint in the graph, which will be of the form:

(xt − g(ut , xt−1))
T R−1

t
(xt − g(ut , xt−1)) (8)

Hereg is the kinematic motion model of the robot, andRt is
the covariance of the motion noise. Figure 2(b) illustrates the
addition of such a link in the graph. It also shows the addition
of a new element in the information matrix, between the pose
xt and the measurementzi

t
. This update is again additive. As

before, the magnitude of these values reflects the residual
uncertaintyRt due to the measurement noise; the less noisy
the sensor, the larger the value added to� andξ .

After incorporating all measurementsz1:t and controlsu1:t ,
we obtain a sparse graph of soft constraints. The number of
constraints in the graph is linear in the time elapsed, hence the
graph is sparse. The sum of all constraints in the graph will
be of the form

Thrun and Montemerlo / The GraphSLAM Algorithm 407

Fig. 1. GraphSLAM illustration, with 4 poses and two map features. Nodes in the graphs are robot poses and feature
locations. The graph is populated by two types of edges: Solid edges which link consecutive robot poses, and dashed
edges, which link poses with features sensed while the robot assumes that pose. Each link in GraphSLAM is a non-linear
quadratic constraint. Motion constraints integrate the motion model; measurement constraints the measurement model. The tar-
get function of GraphSLAM is sum of these constraints. Minimizing it yields the most likely map and the most likely robot path.

JGraphSLAM= xT

0 �0 x0 +
∑

t

(xt − g(ut , xt−1))
T

R−1
t

(xt − g(ut , xt−1))

+
∑

t

∑
i

(zi

t
− h(yt , c

i

t
, i))T

Q−1
t

(zi

t
− h(yt , c

i

t
, i)) (9)

It is a function defined over pose variablesx1:t and all fea-
ture locations in the mapm. Notice that this expression also
features ananchoring constraint of the formxT

0 �0 x0. This
constraint anchors the absolute coordinates of the map by ini-
tializing the very first pose of the robot as(0 0 0)T .

In the associated information matrix�, the off-diagonal
elements are all zero with two exceptions: between any two
consecutive posesxt−1 andxt will be a non-zero value that
represents the information link introduced by the controlut .
Also non-zero will be any element between a map featuremj

and a posext , if mj was observed when the robot was atxt .All
elements between pairs of different features remain zero. This
reflects the fact that we never receive information pertaining
to their relative location—all we receive in SLAM are mea-
surements that constrain the location of a feature relative to
a robot pose. Thus, the information matrix is equally sparse;
all but a linear number of its elements are zero.

3.4. Inference

Of course, neither the graph representation nor the informa-
tion matrix representation gives us what we want: the map and
the path. In GraphSLAM, the map and the path are obtained

from the linearized information matrix� and the information
vector ξ , via the equations� = �−1 andµ = � ξ . This
operation requires us to solve a system of linear equations.
This raises the question on how efficiently we can recover the
map estimateµ.

The answer to the complexity question depends on the
topology of the world. If each feature is seen only locally
in time, the graph represented by the constraints is linear.
Thus,� can be reordered so that it becomes a band-diagonal
matrix, that is, all non-zero values occur near its diagonal. The
equationµ = �−1ξ can then be computed in linear time. This
intuition carries over to a cycle-free world that is traversed
once, so that each feature is seen for a short, consecutive period
of time.

The more common case, however, involves features that
are observed multiple times, with large time delays in be-
tween. This might be the case because the robot goes back
and forth through a corridor, or because the world possesses
cycles. In either situation, there will exist featuresmj that
are seen at drastically different time stepsxt1 andxt2, with
t2 � t1. In our constraint graph, this introduces a cyclic depen-
dence:xt1 andxt2 are linked through the sequence of controls
ut1+1, ut1+2, . . . , ut2 and through the joint observation links be-
tweenxt1 andmj , andxt2 andmj , respectively. Such links make
our variable reordering trick inapplicable, and recovering the
map becomes more complex. In fact, since the inverse of� is
multiplied with a vector, the result can be computed with op-
timization techniques such as conjugate gradient, without ex-
plicitly computing the full inverse matrix. Since most worlds
possess cycles, this is the case of interest.

408 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

(a) Observation ls landmarkm1

(b) Robot motion fromx1 to x2

(c) Several steps later

Fig. 2. Illustration of the acquisition of the information matrix in GraphSLAM. The left diagram shows the dependence graph,
the right the information matrix.

The GraphSLAM algorithm now employs an important
factorization trick, which we can think of as propagating in-
formation trough the information matrix (in fact, it is a gen-
eralization of the well-knownvariable elimination algorithm
for matrix inversion). Suppose we would like to remove a fea-
turemj from the information matrix� and the information
stateξ . In our spring mass model, this is equivalent to remov-
ing the node and all springs attached to this node. As we shall
see below, this is possible by a remarkably simple operation:

we can remove all those springs betweenmj and the poses at
whichmj was observed, by introducing new springs between
any pair of such poses.

This process is illustrated in Figure 3, which shows the
removal of two map features,m1 andm3 (the removal ofm2

andm4 is trivial in this example). In both cases, the feature
removal modifies the link between any pair of poses from
which a feature was originally observed. As illustrated in Fig-
ure 3(b), this operation may lead to the introduction of new

Thrun and Montemerlo / The GraphSLAM Algorithm 409

(a) The removal ofm1 changes the link betweenx1 andx2

(b) The removal ofm3 introduces a new link betweenx2 andx4

(c) Final result after removing all map features

Fig. 3. Reducing the graph in GraphSLAM: Arcs are removed to yield a network of links that only connect robot poses.

410 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

links in the graph. In the example shown there, the removal
of m3 leads to a new link betweenx2 andx4.

Letτ(j) be the set of poses at whichmj was observed (that
is:xt ∈ τ(j)⇐⇒ ∃i : ci

t
= j).Then we already know that the

featuremj is only linked to posesxt in τ(j); by construction,
mj is not linked to any other pose, or to any feature in the
map. We can now set all links betweenmj and the posesτ(j)

to zero by introducing a new link between any two poses
xt , xt ′ ∈ τ(j). Similarly, the information vector values for
all posesτ(j) are also updated. An important characteristic
of this operation is that it is local: It only involves a small
number of constraints. After removing all links tomj , we can
safely removemj from the information matrix and vector.
The resulting information matrix is smaller—it lacks an entry
for mj . However, it is equivalent for the remaining variables,
in the sense that the posterior defined by this information
matrix is mathematically equivalent to the original posterior
before removingmj . This equivalence is intuitive: We simply
have replaced springs connectingmj to various poses in our
spring mass model by a set of springs directly linking these
poses. In doing so, the total force asserted by these springs
remains equivalent, with the only exception thatmj is now
disconnected.

The virtue of this reduction step is that we can gradually
transform our inference problem into a smaller one. By re-
moving each featuremj from � andξ , we ultimately arrive
at a much smaller information form̃� and ξ̃ defined only
over the robot path variables. The reduction can be carried
out in time linear in the size of the map; in fact, it generalizes
the variable elimination technique for matrix inversion to the
information form, in which we also maintain an information
state. The posterior over the robot path is now recovered as
�̃ = �̃−1 andµ̃ = �̃ξ . Unfortunately, our reduction step does
not eliminate cycles in the posterior. The remaining inference
problem may still require more than linear time.

As a last step, GraphSLAM recovers the feature locations.
Conceptually, this is achieved by building a new information
matrix �j and information vectorξj for eachmj . Both are
defined over the variablemj and the posesτ(j) at whichmj

were observed. It contains the original links betweenmj and
τ(j), but the posesτ(j) are set to the values iñµ, without
uncertainty. From this information form, it is now simple to
calculate the location ofmj , using the common matrix inver-
sion trick. Clearly,�j contains only elements that connect to
mj ; hence the inversion takes time linear in the number of
poses inτ(j).

It should be apparent why the graph representation is such
a natural representation. The full SLAM problem is solved
by locally adding information into a large information graph,
one edge at a time for each measurementzi

t
and each control

ut . To turn such information into an estimate of the map and
the robot path, it is first linearized, then information between
poses and features is gradually shifted to information between
pairs of poses. The resulting structure only constrains the

robot poses, which are then calculated using matrix inversion.
Once the poses are recovered, the feature locations are calcu-
lated one after another, based on the original feature-to-pose
information.

4. The GraphSLAM Algorithm

We will now make the various computational steps of the
GraphSLAM precise. The full GraphSLAM algorithm will
be described in a number of steps. The main difficulty in
implementing the simple additive information algorithm per-
tains to the conversion of a conditional probability of the form
p(zi

t
| xt , m) andp(xt | ut , xt−1) into a link in the information

matrix. The information matrix elements are all linear; hence
this step involves linearizingp(zi

t
| xt , m) andp(xt | ut , xt−1).

To perform this linearization, we need an initial estimateµ0:t
for all posesx0:t .

There exist a number of solutions to the problem of finding
an initial meanµ suitable for linearization. For example, we
can run an EKF SLAM and use its estimate for linearization
(Dissanayake et al. 2001). GraphSLAM uses an even sim-
pler technique: our initial estimate will simply be provided
by chaining together the motion modelp(xt | ut , xt−1). Such
an algorithm is outlined in Table 1, and called thereGraph-
SLAM_initialize. This algorithm takes the controlsu1:t as in-
put, and outputs sequence of pose estimatesµ0:t . It initializes
the first pose by zero, and then calculates subsequent poses
by recursively applying the velocity motion model. Since we
are only interested in the mean poses vectorµ0:t , Graph-
SLAM_initialize only uses the deterministic part of the mo-
tion model. It also does not consider any measurement in its
estimation.

Once an initialµ0:t is available, the GraphSLAM algorithm
constructs the full SLAM information matrix� and the corre-
sponding information vectorξ . This is achieved by linearizing
the links in the graph. The algorithmGraphSLAM_linearize
is depicted in Table 2. This algorithm contains a good amount
of mathematical notation, much of which will become clear
in our derivation of the algorithm further below.Graph-
SLAM_linearize accepts as an input the set of controls,u1:t ,
the measurementsz1:t and associated correspondence vari-
ablesc1:t , and the mean pose estimatesµ0:t . It then gradually
constructs the information matrix� and the information vec-
tor ξ through linearization, by locally adding sub-matrices in
accordance with the information obtained from each measure-
ment and each control.

In particular, line 2 inGraphSLAM_linearize initializes
the information elements. The “infinite” information entry in
line 3 fixes the initial posex0 to (0 0 0)T . It is necessary, since
otherwise the resulting matrix becomes singular, reflecting the
fact that from relative information alone we cannot recover
absolute estimates.

Controls are integrated in lines 4 through 9 ofGraph-
SLAM_linearize. The posêx and the JacobianGt calculated

Thrun and Montemerlo / The GraphSLAM Algorithm 411

Table 1. Initialization of the Mean Pose Vector µ1:tµ1:tµ1:t in the GraphSLAM Algorithm

1: Algorithm GraphSLAM_initialize(u1:t):

2:


 µ0,x

µ0,y

µ0,θ


 =


 0

0
0




3: for all controls ut = (vt ωt)
T do

4:


 µt,x

µt,y

µt,θ


 =


 µt−1,x

µt−1,y

µt−1,θ




4: +

 − vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt	t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt	t)

ωt	t




5: endfor
6: return µ0:t

Table 2. Calculation of ��� and ξξξ in GraphSLAM

1: Algorithm GraphSLAM_linearize(u1:t , z1:t , c1:t , µ0:t):

2: set � = 0, ξ = 0

3: add


 ∞ 0 0

0 ∞ 0
0 0 ∞


 to � at x0

4: for all controls ut = (vt ωt)
T do

5: x̂t = µt−1 +

 − vt

ωt
sinµt−1,θ + vt

ωt
sin(µt−1,θ + ωt	t)

vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt	t)

ωt	t




6: Gt =

 1 0 vt

ωt
cosµt−1,θ − vt

ωt
cos(µt−1,θ + ωt	t)

0 1 vt

ωt
sinµt−1,θ − vt

ωt
sin(µt−1,θ + ωt	t)

0 0 1




see next page for continuation

412 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

continued from the previous page

7: add

(
1
−Gt

)
R−1

t
(1 −Gt) to � at xt and xt−1

8: add

(
1
−Gt

)
R−1

t
[x̂t +Gt µt−1] to ξ at xt and xt−1

9: endfor

10: for all measurements zt do

11: Qt =

 σr 0 0

0 σφ 0
0 0 σs




12: for all observed features zi
t
= (ri

t
φi

t
)T do

13: j = ci
t

14: δ =
(

δx

δy

)
=
(

µj,x − µt,x

µj,y − µt,y

)
15: q = δT δ

16: ẑi
t
=
(√

q

atan2(δy, δx)− µt,θ

)

17: Hi
t
= 1

q

(√
qδx −√qδy 0 −√qδx

√
qδy

δy δx −1 −δy −δx

)
18: add HiT

t
Q−1

t
H i

t
to � at xt and mj

19: add HiT
t

Q−1
t
[zi

t
− ẑi

t
−Hi

t




µt,x

µt,y

µt,θ

µj,x

µj,y


] to ξ at xt and mj

20: endfor

21: endfor

22: return �, ξ

in lines 5 and 6 represent the linear approximation of the
non-linear measurement functiong. As is obvious from these
equations, this linearization step utilizes the pose estimates
µ0:t−1, with µ0 = (0 0 0)T . This leads to the updates for�,
andξ , calculated in lines 7, and 8, respectively. Both terms
are added into the corresponding rows and columns of� and
ξ . This addition realizes the inclusion of a new constraint into
the SLAM posterior, very much along the lines of the intuitive
description in the previous section.

Measurements are integrated in lines 10 through 21 of
GraphSLAM_linearize. The matrixQt calculated in line
11 is the familiar measurement noise covariance. Lines 13
through 17 compute the Taylor expansion of the measurement
function. This calculation assumesknown correspondence be-

tween observed features and features in the map (line 13). At-
tention has to be paid to the implementation of line 16, since
the angular expressions can be shifted arbitrarily by 2π . This
calculation culminates in the computation of the measurement
update in lines 18 and 19. The matrix that is being added to
� in line 18 is of dimension 5× 5. To add it, we decompose
it into a matrix of dimension 3× 3 for the posext , a matrix
of dimension 2× 2 for the featuremj , and two matrices of
dimension 3× 2 and 2× 3 for the link betweenxt andmj .
Those are added to� at the corresponding rows and columns.
Similarly, the vector added to the information vectorξ is of
vertical dimension 5. It is also chopped into two vectors of
size 3 and 2, and added to the elements corresponding toxt

andmj , respectively. The result ofGraphSLAM_linearize

Thrun and Montemerlo / The GraphSLAM Algorithm 413

is an information vectorξ and a matrix�. We already noted
that� is sparse. It contains only non-zero sub-matrices along
the main diagonal, between subsequent poses, and between
poses and features in the map. The running time of this al-
gorithm is linear int , the number of time steps at which data
was accrued.

The next step of the GraphSLAM algorithm pertains to
reducing the dimensionality of the information matrix/vector.
This is achieved through the algorithmGraphSLAM_reduce
in Table 3. This algorithm takes as input� and ξ defined
over the full space of map features and poses, and outputs a
reduced matrix̃� and vectors̃ξ defined over the space of all
poses (but not the map!). This transformation is achieved by
removing featuresmj one at a time, in lines 4 through 9 of
GraphSLAM_reduce. The bookkeeping of the exact indexes
of each item in�̃ and ξ̃ is a bit tedious, hence Table 3 only
provides an intuitive account.

Line 5 calculates the set of posesτ(j) at which the robot
observed featurej . It then extracts two sub-matrices from the
present̃�: �̃j,j and�̃τ(j),j . �̃j,j is the quadratic sub-matrix be-
tweenmj andmj , and�̃τ(j),j is composed of the off-diagonal
elements betweenmj and the pose variablesτ(j). It also ex-
tracts from the information state vectorξ̃ the elements cor-
responding to thej -th feature, denoted here asξj . It then
subtracts information from̃� andξ̃ as stated in lines 6 and 7.
After this operation, the rows and columns for the featuremj

are zero. These rows and columns are then removed, reducing
the dimension oñ� andξ̃ accordingly. This process is iterated
until all features have been removed, and only pose variables
remain in�̃ andξ̃ . The complexity ofGraphSLAM_reduce
is once again linear int .

The last step in the GraphSLAM algorithm computes the
mean and covariance for all poses in the robot path, and a
mean location estimate for all features in the map. This is
achieved throughGraphSLAM_solve inTable 4. Line 3 com-
putes the path estimatesµ0:t . This can be achieved by inverting
the reduced information matrix̃� and multiplying the result-
ing covariance with the information vector, or by optimization
techniques such as conjugate gradient descent. Subsequently,
GraphSLAM_solve computes the location of each feature in
lines 4 through 7. The return value ofGraphSLAM_solve
contains the mean for the robot path and all features in the
map, but only the covariance for the robot path.

The quality of the solution calculated by the GraphSLAM
algorithm depends on the goodness of the initial mean es-
timates, calculated byGraphSLAM_initialize. Thex- and
y-components of these estimates affect the respective models
in a linear way, hence the linearization does not depend on
these values. Not so for the orientation variables inµ0:t . Er-
rors in these initial estimates affect the accuracy of the Taylor
approximation, which in turn affects the result.

To reduce potential errors due to the Taylor approximation
in the linearization, the proceduresGraphSLAM_linearize,
GraphSLAM_reduce, and GraphSLAM_solve are run

multiple times over the same data set. Each iteration takes
as an input an estimated mean vectorµ0:t from the previous
iteration, and outputs a new, improved estimate. The iterations
of the GraphSLAM optimization are only necessary when the
initial pose estimates have high error (e.g. more than 20 de-
grees orientation error). A small number of iterations (e.g. 3)
is usually sufficient.

Table 5 summarizes the resulting algorithm. It initializes
the means, then repeats the construction step, the reduction
step, and the solution step. Typically, two or three iterations
suffice for convergence.The resulting meanµ is our best guess
of the robot’s path and the map.

5. Mathematical Derivation of GraphSLAM

The derivation of the GraphSLAM algorithm begins with
a derivation of a recursive formula for calculating the full
SLAM posterior, represented in information form. We then
investigate each term in this posterior, and derive from them
the additive SLAM updates through Taylor expansions. From
that, we will derive the necessary equations for recovering the
path and the map.

5.1. The Full SLAM Posterior

It will be beneficial to introduce a variable for the augmented
state of the full SLAM problem. We will usey to denote state
variables that combine one or more posesx with the mapm.
In particular, we definey0:t to be a vector composed of the path
x0:t and the mapm, whereasyt is composed of the momentary
pose at timet and the mapm:

y0:t =




x0

x1

...

xt

m


 and yt =

(
xt

m

)
(10)

The posterior in the full SLAM problem isp(y0:t |
z1:t , u1:t , c1:t), wherez1:t are the familiar measurements with
correspondencesc1:t , andu1:t are the controls. Bayes rule en-
ables us to factor this posterior:

p(y0:t | z1:t , u1:t , c1:t) (11)

= η p(zt | y0:t , z1:t−1, u1:t , c1:t) p(y0:t | z1:t−1, u1:t , c1:t)

whereη is the familiar normalizer. The first probability on the
right-hand side can be reduced by dropping irrelevant condi-
tioning variables:

p(zt | y0:t , z1:t−1, u1:t , c1:t) = p(zt | yt , ct) (12)

414 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

Table 3. Algorithm for Reducing the Size of the Information Representation of the Posterior
in GraphSLAM

1: Algorithm GraphSLAM_reduce(�, ξ):

2: �̃ = �

3: ξ̃ = ξ

4: for each feature j do

5: let τ(j) be the set of all poses xt at which j was observed

6: subtract �̃τ(j),j �̃−1
j,j ξj from ξ̃ at xτ(j) and mj

7: subtract �̃τ(j),j �̃−1
j,j �̃j,τ (j) from �̃ at xτ(j) and mj

8: remove from �̃ and ξ̃ all rows/columns corresponding to j

9: endfor

10: return �̃, ξ̃

Table 4. Algorithm for Updating the Posterior µµµ

1: Algorithm GraphSLAM_solve(�̃, ξ̃ , �, ξ):

2: �0:t = �̃−1

3: µ0:t = �0:t ξ̃

4: for each feature j do

5: set τ(j) to the set of all poses xt at which j was observed

6: µj = �−1
j,j (ξj +�j,τ(j) µ̃τ(j))

7: endfor

8: return µ, �0:t

Table 5. The GraphSLAM Algorithm for the Full SLAM Problem with Known
Correspondence

1: Algorithm GraphSLAM_known_correspondence(u1:t , z1:t , c1:t):

2: µ0:t = GraphSLAM_initialize(u1:t)

3: repeat

4: �, ξ = GraphSLAM_linearize(u1:t , z1:t , c1:t , µ0:t)

5: �̃, ξ̃ = GraphSLAM_reduce(�, ξ)

6: µ, �0:t = GraphSLAM_solve(�̃, ξ̃ , �, ξ)

7: until convergence

8: return µ

Thrun and Montemerlo / The GraphSLAM Algorithm 415

Similarly, we can factor the second probability by partitioning
y0:t into xt andy0:t−1, and obtain:

p(y0:t | z1:t−1, u1:t , c1:t) (13)

= p(xt | y0:t−1, z1:t−1, u1:t , c1:t) p(y0:t−1 | z1:t−1, u1:t , c1:t)

= p(xt | xt−1, ut) p(y0:t−1 | z1:t−1, u1:t−1, c1:t−1)

Putting these expressions back into (11) gives us the recursive
definition of the full SLAM posterior:

p(y0:t | z1:t , u1:t , c1:t) (14)

= η p(zt | yt , ct)

p(xt | xt−1, ut) p(y0:t−1 | z1:t−1, u1:t−1, c1:t−1)

The closed form expression is obtained through induction over
t . Herep(y0) is the prior over the mapm and the initial posex0.

p(y0:t | z1:t , u1:t , c1:t) (15)

= η p(y0)
∏

t

p(xt | xt−1, ut) p(zt | yt , ct)

= η p(y0)
∏

t

[
p(xt | xt−1, ut)

∏
i

p(zi

t
| yt , c

i

t
)

]

Here, as before,zi
t
is thei-th measurement in the measurement

vectorzt at timet . The priorp(y0) factors into two indepen-
dent priors,p(x0) andp(m). In SLAM, we usually have no
prior knowledge about the mapm. We simply replacep(y0)

by p(x0) and subsume the factorp(m) into the normalizerη.

5.2. The Negative Log Posterior

The information form represents probabilities in logarithmic
form. The log-SLAM posterior follows directly from the pre-
vious equation:

logp(y0:t | z1:t , u1:t , c1:t) (16)

= const.+ logp(x0)

+
∑

t

[
logp(xt | xt−1, ut) +

∑
i

logp(zi

t
| yt , c

i

t
)

]

As stated above, we assume the outcome of robot motion is
distributed normally according toN (g(ut , xt−1), Rt), whereg
is the deterministic motion function, andRt is the covariance
of the motion error. Likewise, measurementszi

t
are gener-

ated according toN (h(yt , c
i
t
, i), Qt), whereh is the familiar

measurement function andQt is the measurement error co-

variance. In equations, we have:

p(xt | xt−1, ut) (17)

= η exp

{
−1

2
(xt − g(ut , xt−1))

T R−1
t

(xt − g(ut , xt−1))

}
p(zi

t
| yt , c

i

t
) (18)

= η exp

{
−1

2
(zi

t
− h(yt , c

i

t
, i))T Q−1

t
(zi

t
− h(yt , c

i

t
, i))

}
The priorp(x0) in (16) is also easily expressed by a Gaussian-
type distribution. Itanchors the initial posex0 to the origin of
the global coordinate system:x0 = (0 0 0)T :

p(x0) = η exp

{
−1

2
xT

0 �0 x0

}
(19)

with

�0 =

 ∞ 0 0

0 ∞ 0
0 0 ∞


 (20)

For now, it does not concern us that the value of∞ cannot
be implemented, as we can easily substitute∞ with a large
positive number. This leads to the following quadratic form
of the negative log-SLAM posterior in (16):

− logp(y0:t | z1:t , u1:t , c1:t) (21)

= const.+ 1

2

[
xT

0 �0 x0 +
∑

t

(xt − g(ut , xt−1))
T

R−1
t

(xt − g(ut , xt−1))+
∑

t

∑
i

(zi

t
− h(yt , c

i

t
, i))T

Q−1
t

(zi

t
− h(yt , c

i

t
, i))

]
This is essentially the same asJGraphSLAM in eq. (9), with a
few differences pertaining to the omission of normalization
constants (including a multiplication with−1). Equation (21)
highlights an essential characteristic of the full SLAM poste-
rior in the information form: it is composed of a number of
quadratic terms, one for the prior, and one for each control
and each measurement.

5.3. Taylor Expansion

The various terms in eq. (21) are quadratic in the functionsg

andh, not in the variables we seek to estimate (poses and the
map). GraphSLAM alleviates this problem bylinearizing g

andh via Taylor expansion. In particular, we have:

g(ut , xt−1) ≈ g(ut , µt−1)+ g′(ut , µt−1)︸ ︷︷ ︸
=: Gt

(xt−1 − µt−1) (22)

h(yt , c
i

t
, i) ≈ h(µt, c

i

t
, i) + h′(µt)︸ ︷︷ ︸

=: Hi
t

(yt − µt) (23)

416 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

Here µt is the current estimate of the state vectoryt , and
Hi

t
= hi

t
Fx,j for the projection matrixFx,j as indicated.

This linear approximation turns the log-likelihood (21) into
a function that is quadratic iny0:t . In particular, we obtain:

logp(y0:t | z1:t , u1:t , c1:t) = const.− 1

2
(24){

xT

0 �0 x0 +
∑

t

[xt − g(ut , µt−1)−Gt(xt−1 − µt−1)]T

R−1
t
[xt − g(ut , µt−1)−Gt(xt−1 − µt−1)]

+
∑

i

[zi

t
− h(µt, c

i

t
, i)−Hi

t
(yt − µt)]T

Q−1
t
[zi

t
− h(µt, c

i

t
, i)−Hi

t
(yt − µt)]

}
This function is indeed a quadratic iny0:t , and it is convenient
to reorder its terms, omitting several constant terms.

logp(y0:t | z1:t , u1:t , c1:t) = const. (25)

− 1

2
xT

0 �0 x0︸ ︷︷ ︸
quadratic inx0

− 1

2

∑
t

xT

t−1:t

(
1
−Gt

)
R−1

t
(1 −Gt) xt−1:t︸ ︷︷ ︸

quadratic inxt−1:t

+ xT

t−1:t

(
1
−Gt

)
R−1

t
[g(ut , µt−1)+Gt µt−1]︸ ︷︷ ︸

linear in xt−1:t

− 1

2

∑
i

yT

t
H iT

t
Q−1

t
H i

t
yt︸ ︷︷ ︸

quadratic inyt

+ yT

t
H iT

t
Q−1

t
[zi

t
− h(µt, c

i

t
, i)−Hi

t
µt]︸ ︷︷ ︸

linear in yt

Herext−1:t denotes the vector concatenatingxt−1 andxt ; hence
we can write(xt−Gt xt−1)

T = xT
t−1:t (1 −Gt)

T . If we collect
all quadratic terms into the matrix�, and all linear terms into
a vectorξ , we see that expression (24) is of the form:

logp(y0:t | z1:t , u1:t , c1:t) = const.− 1

2
yT

0:t � y0:t + yT

0:t ξ (26)

5.4. Constructing the Information Form

We can read off these terms directly from (25), and verify
that they are indeed implemented in the algorithmGraph-
SLAM_linearize in Table 2:

• Prior. The initial pose prior manifests itself by a
quadratic term�0 over the initial pose variablex0 in
the information matrix. Assuming appropriate exten-
sion of the matrix�0 to match the dimension ofy0:t , we
have:

� ←− �0 (27)

This initialization is performed in lines 2 and 3 of the
algorithmGraphSLAM_linearize.

• Controls. From (25), we see that each controlut adds to
� andξ the following terms, assuming that the matrices
are rearranged so as to be of matching dimensions:

�←− �+
(

1
−Gt

)
R−1

t
(1 −Gt) (28)

ξ ←− ξ +
(

1
−Gt

)
R−1

t
[g(ut , µt−1)+Gt µt−1]

(29)

This is realized in lines 4 through 9 inGraph-
SLAM_linearize.

• Measurements. According to eq. (25), each measure-
mentzi

t
transforms� andξ by adding the following

terms, once again assuming appropriate adjustment of
the matrix dimensions:

�←− �+HiT

t
Q−1

t
H i

t
(30)

ξ ←− ξ +HiT

t
Q−1

t
[zi

t
− h(µt, c

i

t
, i)−Hi

t
µt] (31)

This update occurs in lines 10 through 21 inGraph-
SLAM_linearize.

This proves the correctness of the construction algorithm
GraphSLAM_linearize, relative to our Taylor expansion
approximation.

We also note that the steps above only affect off-diagonal
elements that involve at least one pose. Thus, all between-
feature elements are zero in the resulting information matrix.

5.5. Reducing the Information Form

The reduction stepGraphSLAM_reduce is based on a fac-
torization of the full SLAM posterior.

p(y0:t | z1:t , u1:t , c1:t) = p(x0:t | z1:t , u1:t , c1:t) (32)

p(m | x0:t , z1:t , u1:t , c1:t)

Herep(x0:t | z1:t , u1:t , c1:t) ∼ N (�, ξ) is the posterior over
paths alone, with the map integrated out:

p(x0:t | z1:t , u1:t , c1:t) =
∫

p(y0:t | z1:t , u1:t , c1:t) dm (33)

As we will show shortly, this probability is indeed calculated
by the algorithmGraphSLAM_reduce in Table 3, since

p(x0:t | z1:t , u1:t , c1:t) ∼ N (ξ̃ , �̃) (34)

In general, the integration in (33) will be intractable, due to the
large number of variables inm. For Gaussians, this integral
can be calculated in closed form. The key insight is given by
themarginalization lemma for Gaussians, stated in Table 7.

Thrun and Montemerlo / The GraphSLAM Algorithm 417

Table 6. The (Specialized) Inversion Lemma, Sometimes Called the Sherman/Morrison
Formula (see the Appendix for a derivation)

Inversion Lemma. For any invertible quadratic matricesR andQand any matrixP with appropriate
dimensions, the following holds true

(R + P Q P T)−1 = R−1 − R−1 P (Q−1 + P T R−1 P)−1 P T R−1

assuming that all above matrices can be inverted as stated.

Table 7. Lemma for Marginalizing Gaussians in Information Form. The Form of the
Covariance �̄xx�̄xx�̄xx in This Lemma is Also as Schur complement (a derivation can be found
in the Appendix).
Marginals of a multivariate Gaussian. Let the probability distributionp(x, y) over the random
vectorsx andy be a Gaussian represented in the information form

� =
(

�xx �xy

�yx �yy

)
and ξ =

(
ξx

ξy

)

If �yy is invertible, the marginalp(x) is a Gaussian whose information representation is

�̄xx = �xx −�xy �−1
yy

�yx and ξ̄x = ξx −�xy �−1
yy

ξy

Let us subdivide the matrix� and the vectorξ into sub-
matrices, for the robot pathx0:t and the mapm:

� =
(

�x0:t ,x0:t �x0:t ,m
�m,x0:t �m,m

)
(35)

ξ =
(

ξx0:t
ξm

)
(36)

According to themarginalization lemma, the probability (34)
is obtained as

�̃ = �x0:t ,x0:t −�x0:t ,m �−1
m,m

Ømegam,x0:t (37)

ξ̃ = ξx0:t −�x0:t ,m �−1
m,m

ξm (38)

The matrix�m,m is block-diagonal. This follows from the way
� is constructed, in particular the absence of any links be-
tween pairs of features. This makes the inversion efficient:

�−1
m,m
=

∑
j

F T

j
�−1

j,j
Fj (39)

where�j,j = Fj�F T
j

is the sub-matrix of� that corresponds
to thej -th feature in the map, that is

Fj =

 0 · · ·0 1 0 0· · ·0

0 · · ·0 0 1︸︷︷︸
j−th feature

0 · · ·0

 (40)

This insight makes it possible to decompose the implement

eqs (37) and (38) into a sequential update:

�̃ = �x0:t ,x0:t −
∑

j

�x0:t ,j �−1
j,j
;�j,x0:t (41)

ξ̃ = ξx0:t −
∑

j

�x0:t ,j �−1
j,j

ξj (42)

The matrix�x0:t ,j is non-zero only for elements inτ(j), the
set of poses at which featurej was observed. This essentially
proves the correctness of the reduction algorithmGraph-
SLAM_reduce in Table 3. The operation performed on�
in this algorithm can be thought of as the variable elimination
algorithm for matrix inversion, applied to the feature variables
but not the robot pose variables.

5.6. Recovering the Path and the Map

The algorithmGraphSLAM_solve in Table 4 calculates the
mean and variance of the GaussianN (ξ̃ , �̃):

�̃ = �̃−1 (43)

µ̃ = �̃ ξ̃ (44)

In particular, this operation provides us with the mean of the
posterior on the robot path; it does not give us the locations
of the features in the map.

It remains to recover the second factor of eq. (32):

p(m | x0:t , z1:t , u1:t , c1:t) (45)

418 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

Table 8. Lemma for Conditioning Gaussians in Information Form (a derivation can be found
in the Appendix)
Conditionals of a multivariate Gaussian. Let the probability distributionp(x, y) over the random
vectorsx andy be a Gaussian represented in the information form

� =
(

�xx �xy

�yx �yy

)
and ξ =

(
ξx

ξy

)

The conditionalp(x | y) is a Gaussian with information matrix�xx and information vectorξx +
�xy y.

The conditioning lemma, stated in Table 8, shows that this
probability distribution is Gaussian with the parameters

�m = �−1
m,m

(46)

µm = �m(ξm +�m,x0:t ξ̃) (47)

Hereξm and�m,m are the sub-vector ofξ , and the sub-matrix
of �, respectively, restricted to the map variables. The matrix
�m,x0:t is the off-diagonal sub-matrix of� that connects the
robot path to the map.As noted before,�m,m is block-diagonal,
hence we can decompose

p(m | x0:t , z1:t , u1:t , c1:t) =
∏

j

p(mj | x0:t , z1:t , u1:t , c1:t) (48)

where eachp(mj | x0:t , z1:t , u1:t , c1:t) is distributed accord-
ing to

�j = �−1
j,j

(49)

µj = �j(ξj +�j,x0:t µ̃) = �j(ξj +�j,τ(j)µ̃τ(j)) (50)

The last transformation exploited the fact that the sub-matrix
�j,x0:t is zero except for those pose variablesτ(j) from which
thej -th feature was observed.

It is important to notice that this is a Gaussianp(m |
x0:t , z1:t , u1:t , c1:t) conditioned on the true pathx0:t . In prac-
tice, we do not know the path, hence one might want to know
the posteriorp(m | z1:t , u1:t , c1:t) without the path in the condi-
tioning set. This Gaussian cannot be factored in the moments
parameterization, as locations of different features are cor-
related through the uncertainty over the robot pose. For this
reason,GraphSLAM_solve returns the mean estimate of the
posterior but only the covariance over the robot path. Luckily,
we never need the full Gaussian in moments representation—
which would involve a fully populated covariance matrix of
massive dimensions—as all essential questions pertaining to
the SLAM problem can be answered at least in approximation
without knowledge of�.

6. Data Association in GraphSLAM

Data association in GraphSLAM is realized through corre-
spondence variables. GraphSLAM searches for a single best

correspondence vector, instead of calculating an entire distri-
bution over correspondences. Thus, finding a correspondence
vector is a search problem. However, it proves convenient to
define correspondences slightly differently in GraphSLAM
than before: correspondences are defined over pairs of fea-
tures in the map, rather than associations of measurements to
features. Specifically, we sayc(j, k) = 1 if mj andmk corre-
spond to the same physical feature in the world. Otherwise,
c(j, k) = 0. This feature-correspondence is in fact logically
equivalent to the correspondence defined in the previous sec-
tion, but it simplifies the statement of the basic algorithm.

Our technique for searching the space of correspondences
is greedy, just as in the EKF. Each step in the search of the best
correspondence value leads to an improvement, as measured
by the appropriate log-likelihood function. However, because
GraphSLAM has access to all data at the same time, it is possi-
ble to devise correspondence techniques that are considerably
more powerful than the incremental approach in the EKF. In
particular:

1. At any point in the search, GraphSLAM can con-
sider the correspondence of any set of features. There
is no requirement to process the observed features
sequentially.

2. Correspondence search can be combined with the cal-
culation of the map. Assuming that two observed fea-
tures correspond to the same physical feature in the
world affects the resulting map. By incorporating such
a correspondence hypothesis into the map, other corre-
spondence hypotheses will subsequently look more or
less likely.

3. Data association decisions in GraphSLAM can be un-
done. The goodness of a data association depends on
the value of other data association decisions. What ap-
pears to be a good choice early on in the search may, at
some later time in the search, turn out to be inferior. To
accommodate such a situation, GraphSLAM can effec-
tively undo a previous data association decision.

We will now describe one specific correspondence search al-
gorithm that exploits the first two properties, but not the third.

Thrun and Montemerlo / The GraphSLAM Algorithm 419

Our data association algorithm will still be greedy, and it will
sequentially search the space of possible correspondences to
arrive at a plausible map. However, like all greedy algorithms,
our approach is subject to local maxima; the true space of
correspondences is of course exponential in the number of
features in the map. Nevertheless, we will be content with a
hill climbing algorithm.

6.1. The GraphSLAM Algorithm with Unknown
Correspondence

The key component of our algorithm is alikelihood test for
correspondence. Specifically, GraphSLAM correspondence
is based on a simple test: what is the probability that two
different features in the map,mj andmk, correspond to the
same physical feature in the world? If this probability exceeds
a threshold, we will accept this hypothesis and merge both
features in the map.

The algorithm for the correspondence test is depicted in
Table 9: the input to the test are two feature indexes,j and
k, for which we seek to compute the probability that those
two features correspond to the same feature in the physical
world. To calculate this probability, our algorithm utilizes a
number of quantities: the information representation of the
SLAM posterior, as manifest by� andξ , and the result of the
procedureGraphSLAM_solve, which is the mean vectorµ
and the path covariance�0:t .

The correspondence test then proceeds in the following
way. First, it computes the marginalized posterior over the
two target features. This posterior is represented by the in-
formation matrix�[j,k] and vectorξ[j,k] computed in lines 2
and 3 in Table 9. This step of the computation utilizes various
sub-elements of the information form�, ξ , the mean feature
locations as specified throughµ, and the path covariance�0:t .
Next, it calculates the parameters of a new Gaussian random
variable, whose value is the difference betweenmj andmk.
Denoting the difference variable	j,k = mj−mk, the informa-
tion parameters�	j,k, ξ	j,k are calculated in lines 4 and 5, and
the corresponding expectation for the difference is computed
in line 6. Line 7 returns the probability that the difference
betweenmj andmk is zero.

The correspondence test provides us with an algorithm
for performing data association search in GraphSLAM. Ta-
ble 10 shows such an algorithm. It initializes the correspon-
dence variables with unique values. The four steps that follow
(lines 3-7) are the same as in our GraphSLAM algorithm with
known correspondence, stated in Table 5. However, this gen-
eral SLAM algorithm then engages in the data association
search. Specifically, for each pair of different features in the
map, it calculates the probability of correspondence (line 9
in Table 10). If this probability exceeds a thresholdχ , the
correspondence vectors are set to the same value (line 11).

The GraphSLAM algorithm iterates the construction, re-
duction, and solution of the SLAM posterior (lines 12 through

14).As a result, subsequent correspondence tests factor in pre-
vious correspondence decisions though a newly constructed
map. The map construction is terminated when no further fea-
tures are found in its inner loop.

Clearly, the algorithmGraphSLAM is not particularly ef-
ficient. In particular, it tests all feature pairs for correspon-
dence, not just nearby ones. Further, it reconstructs the map
whenever a single correspondence is found; rather than pro-
cessing sets of corresponding features in batch. Such modifi-
cations, however, are relatively straightforward. A good im-
plementation ofGraphSLAM will be more refined than our
basic implementation discussed here.

6.2. Mathematical Derivation of the Correspondence Test

We essentially restrict our derivation to showing the correct-
ness of the correspondence test in Table 9. Our first goal is
to define a posterior probability distribution over a variable
	j,k = mj − mk, thedifference between the location of fea-
turemj and featuremk. Two featuresmj andmk are equivalent
if and only if their location is the same. Hence, by calculat-
ing the posterior probability of	j,k, we obtain the desired
correspondence probability.

We obtain the posterior for	j,k by first calculating the joint
overmj andmk:

p(mj, mk | z1:t , u1:t , c1:t) (51)

=
∫

p(mj, mk | x1:t , z1:t , c1:t) p(x1:t | z1:t , u1:t , c1:t) dx1:t

We will denote the information form of this marginal posterior
by ξ[j,k] and�[j,k]. Note the use of the squared brackets, which
distinguish these values from the sub-matrices of the joint
information form.

The distribution (51) is obtained from the joint posterior
overy0:t , by applying the marginalization lemma. Specifically,
� andξ represent the joint posterior over the full state vector
y0:t in information form, andτ(j) andτ(k) denote the sets
of poses at which the robot observed featurej , and featurek,
respectively. GraphSLAM gives us the mean pose vectorµ̃.To
apply the marginalization lemma (Table 7), we shall leverage
the result of the algorithmGraphSLAM_solve. Specifically,
GraphSLAM_solve provides us with a mean for the features
mj andmk. We simply restate the computation here for the
joint feature pair:

µ[j,k] = �−1
jk,jk

(ξjk +�jk,τ(j,k)µτ(j,k)) (52)

Hereτ(j, k) = τ(j)∪ τ(k) denotes the set of poses at which
the robot observedmj or mk.

For the joint posterior, we also need a covariance. This
covariance isnot computed inGraphSLAM_solve, simply
because the joint covariance over multiple features requires
space quadratic in the number of features. However, for pairs
of features the covariance of the joint is easily recovered.

420 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

Table 9. The GraphSLAM Test for Correspondence: It Accepts as Input an Information
Representation of the SLAM Posterior, Along with the Result of the GraphSLAM_solve Step.
It Then Outputs the Posterior Probability That mjmjmj Corresponds to mkmkmk.

1: Algorithm GraphSLAM_correspondence_test(�, ξ, µ, �0:t , j, k):

2: �[j,k] = �jk,jk −�jk,τ(j,k) �τ(j,k),τ (j,k) �τ(j,k),jk

3: ξ[j,k] = �[j,k] µj,k

4: �	j,k =
(

1

−1

)T

�[j,k]

(
1

−1

)

5: ξ	j,k =
(

1

−1

)T

ξ[j,k]

6: µ	j,k = �−1
	j,k ξ	j,k

7: return |2π �−1
	j,k|− 1

2 exp
{− 1

2
µT

	j,k
�−1

	j,k µ	j,k

}

Table 10. The GraphSLAM Algorithm for the Full SLAM Problem with Unknown
Correspondence. The inner loop of this algorithm can be made more efficient by selective
probing feature pairs mj, mkmj , mkmj , mk, and by collecting multiple correspondences before solving
the resulting collapsed set of equations.

1: Algorithm GraphSLAM(u1:t , z1:t):

2: initialize all ci
t

with a unique value

3: µ0:t = GraphSLAM_initialize(u1:t)

4: �, ξ = GraphSLAM_linearize(u1:t , z1:t , c1:t , µ0:t)

5: �̃, ξ̃ = GraphSLAM_reduce(�, ξ)

6: µ, �0:t = GraphSLAM_solve(�̃, ξ̃ , �, ξ)

7: repeat

8: for each pair of non-corresponding features mj, mk do

9: πj=k = GraphSLAM_correspondence_test
(�, ξ, µ, �0:t , j, k)

10: if πj=k > χ then

11: for all ci
t
= k set ci

t
= j

12: �, ξ = GraphSLAM_linearize(u1:t , z1:t , c1:t , µ0:t)

13: �̃, ξ̃ = GraphSLAM_reduce(�, ξ)

14: µ, �0:t = GraphSLAM_solve(�̃, ξ̃ , �, ξ)

15: endif

16: endfor

17: until no more pair mj, mk found with πj=k < χ

18: return µ

Thrun and Montemerlo / The GraphSLAM Algorithm 421

Let �τ(j,k),τ (j,k) be the sub-matrix of the covariance�0:t re-
stricted to all poses inτ(j, k). Here the covariance�0:t is cal-
culated in line 2 of the algorithmGraphSLAM_solve. Then
the marginalization lemma provides us with the marginal in-
formation matrix for the posterior over(mj mk)

T :

�[j,k] = �jk,jk −�jk,τ(j,k) �τ(j,k),τ (j,k) �τ(j,k),jk (53)

The information form representation for the desired posterior
is now completed by the following information vector:

ξ[j,k] = �[j,k] µ[j,k] (54)

Hence for the joint we have:

p(mj, mk | z1:t , u1:t , c1:t) (55)

= η exp

{
−1

2

(
mj

mk

)T

�[j,k]

(
mj

mk

)

+
(

mj

mk

)T

ξ[j,k]

}

These equations are identical to lines 2 and 3 in Table 9.
The useful thing about our representation is that it imme-

diately lets us define the desired correspondence probability.
For that, let us consider the random variable:

	j,k = mj − mk (56)

=
(

1
−1

)T (
mj

mk

)

=
(

mj

mk

)T (
1
−1

)

Plugging this into the definition of a Gaussian in information
representation, we obtain:

p(j,k | z1:t , u1:t , c1:t) (57)

= η exp


−

1

2
	T

j,k

(
1
−1

)T

�[j,k]

(
1
−1

)
︸ ︷︷ ︸

=: �	j,k

	j,k

+ 	T

j,k

(
1
−1

)T

ξ[j,k]︸ ︷︷ ︸
=: ξ	j,k




= η exp

{
−1

2
	T

j,k
�	j,k +	T

j,k
ξ	j,k

}T

which is Gaussian with the information matrix�	j,k and in-
formation vectorξ	j,k as defined above. To calculate the prob-
ability that this Gaussian assumes the value of	j,k = 0, it is

useful to rewrite this Gaussian in moments parameterization:

p(j,k | z1:t , u1:t , c1:t) (58)

= |2π �−1
	j,k
|− 1

2

exp

{
−1

2
(j,k − µ	j,k)

T �−1
	j,k

(j,k − µ	j,k)

}

where the mean is given by the obvious expression:

µ	j,k = �−1
	j,k

ξ	j,k (59)

These steps are found in lines 4 through 6 in Table 9.
The desired probability for	j,k = 0 is the result of plug-

ging 0 into this distribution, and reading off the resulting prob-
ability:

p(j,k = 0 | z1:t , u1:t , c1:t) = |2π �−1
	j,k
|− 1

2 (60)

exp

{
−1

2
µT

	j,k
�−1

	j,k
µ	j,k

}

This expression is the probability that two features in the map,
mj andmk, correspond to the same features in the map. This
calculation is implemented in line 7 in Table 9.

7. Results

We conducted a number of experiments, all with the robot
shown in Figure 4. In particular, we mapped a number of urban
sites, including NASA’s Search and Rescue Facility DART
and a large fraction of Stanford’s main campus; snapshots of
these experiments will be discussed below.

Our experiments either involved the collection of a sin-
gle large dataset, or a number of datasets. The latter became
necessary since for the environments of the size studied here,
the robot possesses insufficient battery capacity to collect all
data within a single run. In most experiments, the robot is
controlled manually. This is necessary because the urban en-
vironments are usually populated with moving objects, such
as cars, which would otherwise run the danger of colliding
with our robot. We have, on several occasions, used our navi-
gation package Carmen (Montemerlo, Roy, and Thrun 2003)
to drive the robot autonomously, validating the terrain analysis
techniques discussed above.

Our research has led to a number of results. A primary
finding is that with our representation, maps with more than
108 variables can be computed quickly, even under multiple
loop-closure constraints. The time for thinning the network
into its skeleton tends to take linear time in the number of
robot poses, which is the same order as the time required for
data collection. We find that scan matching is easily achieved
in real-time, as the robot moves, using a portable laptop com-
puter. This is a long-known result for horizontally mounted

422 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

Fig. 4. The Segbot, a robot based on the Segway RMP platform and developed through the DARPA MARS program.

Fig. 5. Data acquisition through a two-directional scanning laser (the blue stripe indicates a vertical scan). The coloring
indicates the result of terrain analysis: The ground surface is colored in green, obstacles are red, and structure above the
robot’s reach are shown in white.

laser range finders, but it is reassuring that the same applies
to the more difficult scan matching problem involving a verti-
cally panning scanner. More importantly, the relaxation of the
pose potentials takes in the order of 30 seconds even for the
largest data set used in our research, of an area 600 m by 800 m
in size, and with a dozen cycles. This suggests the appropriate-
ness of our representation an algorithms for large-scale urban
mapping.

The second result pertains to the utility of GPS data for
indoor maps. GPS measurements are easily incorporated into
GraphSLAM; they form yet another arc in the graph of con-
straints.We find that indoor maps become more accurate when
some of the data is collected outdoors, where GPS measure-
ments are available. Below, we will discuss an experimental
snapshot that documents this result.

Experimental snapshots can be found in Figures 6
through 8. Figures 7 and 8 show some of the maps acquired by

our system. All maps are substantially larger than previously
software could handle, all are constructed with some GPS in-
formation. The map shown on the top in Figure 7 corresponds
to Stanford’s main campus; the one on the bottom is an indoor-
outdoor map of the building that houses the computer science
department.

The key result of improved indoor maps through combin-
ing indoor and outdoor mapping is illustrated in Figure 6. Here
we show 2-D slices of the 3-D map in Figure 7 using SLAM
under two different conditions: In the map on the top, the in-
door map is constructed independently of the outdoor map,
whereas the bottom map is constructed jointly. As explained,
the joint construction lets GPS information affect the building
interior through the sequence of potentials liking the outdoor
to the indoor. As this figure suggests, the joint indoor-outdoor
map is significantly more accurate; in fact, the building pos-
sesses a right angle at its center, which is well approximated.

Thrun and Montemerlo / The GraphSLAM Algorithm 423

Fig. 6. Indoor mapping. Top: just based on the IMU and SLAM. Bottom: factoring in GPS data acquired outdoors. This
experiment highlights the utility of our hybrid SLAM algorithm that factors in GPS measurements as available.

424 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

Fig. 7. Top: A map of Stanford University’s main campus, whose diameter is approximately 600 meters. Bottom: 3-D map of
the Gates Computer Science building and the surrounding terrain.

Thrun and Montemerlo / The GraphSLAM Algorithm 425

Fig. 8. Visualization of the NASA Ames ARC Disaster Assistance and Rescue Team training site in Moffett Field, CA. This
site consist of a partially collapsed building with two large observation platforms.

8. Conclusion

We presented the GraphSLAM algorithm, which solves a spe-
cific version of the SLAM problem, called the offline problem
(or full SLAM problem). The offline problem is characterized
by a feasibility to accumulate all data during mapping, and
resolve this data into a map after the robot’s operation is com-
plete. GraphSLAM achieves the latter by mapping the data
into a sparse graph of constraints, which are then mapped
into an information form representation using linearization
through Taylor expansion. The information form is then re-
duced by applying exact transformations, which remove the
map variables from the optimization problem. The resulting
optimization problem is solved via a standard optimization
technique, such as conjugate gradient. GraphSLAM recovers
the map from the pose estimate, through a sequence of de-
coupled small-scale optimization problems (one per feature).
Iteration of the linearization and optimization technique yields
accurate maps in environments with 108 features or more.

The GraphSLAM algorithm follows a rich tradition of pre-
viously published offline SLAM algorithms, which are all
based on the insight that the full SLAM problem corresponds

to a sparse spring-mass system. The key innovation in this
paper is the reduction step, through which the problem of in-
ference in this graphical model becomes manageable. This
step is essential in achieving scalability in offline SLAM.

Experimental results in large-scale urban environments
show that the GraphSLAM approach indeed leads to viable
maps. Our experiments show that it is relatively straightfor-
ward to include other information sources—such as GPS—
into the SLAM problem, by defining appropriate graphical
constraints. For example, we were able to show that through
the graphical model, GPS data acquired outside a build-
ing structure could be propagated into the building interior,
thereby improving the accuracy of an interior map.

GraphSLAM is characterized by a number of limitations.
One arises from the assumption of independent Gaussian
noise. Clearly, real-world noise is not Gaussian and, more
importantly, it is not independent. We find in practice that this
problem can be alleviated by artificially increasing the covari-
ance of the noise variables, which reduces the information
available for SLAM. However, such methods are somewhat
ad-hoc; see Guivant and Masson (2005) for further treatment
of non-Gaussian noise.

426 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

GraphSLAM is also limited in its reliance on a good initial
estimate of the map, computed in Table 1.As the total number
of time steps increases, the accuracy of the odometry-based
initial guess will degrade, leading to an increased number of
data association errors. GraphSLAM, as formulated in this
paper, will eventually diverge because of this initial pose es-
timation step. However, the data set may often be broken into
pieces, for which SLAM can be performed individually before
pasting together the total set of constraints. Such a hierarchical
computation is subject of future research.

Another limitation pertains to the matrix inversion in Ta-
ble 4. This inversion can be painfully slow; and optimization
methods such as conjugate gradient (as brought to bear in our
experiments, can be much more efficient.

More broadly, there remain a number of open questions
that warrant future research. Chief among them is the devel-
opment of SLAM techniques that can handle basic building
elements, such as walls, windows, roofs, and so on. Graph-
SLAM makes a static world assumption, and more research
is needed to understand SLAM in dynamic environments (see
Hähnel, Schulz, and Burgard 2003; Wang, Thorpe, and Thrun
2003 for notable exceptions). Finally, bridging the gap be-
tween online and offline SLAM algorithm is a worthwhile
goal of future research.

Appendix: Derivations

The derivations in this section are standard textbook material.

Derivation of the Inversion Lemma

Define� = (Q−1 + P T R−1 P)−1. It suffices to show that

(R−1 − R−1 P � P T R−1) (R + P Q P T) = I

This is shown through a series of transformations:

= R−1 R︸ ︷︷ ︸
= I

+ R−1 P Q P T − R−1 P � P T R−1 R︸ ︷︷ ︸
= I

− R−1 P � P T R−1 P Q P T

= I + R−1 P Q P T − R−1 P � P T

− R−1 P � P T R−1 P Q P T

= I + R−1 P [Q P T

−� P T − � P T R−1 P Q P T]
= I + R−1 P [Q P T − � Q−1 Q︸ ︷︷ ︸

= I

P T

−� P T R−1 P Q P T]
= I + R−1 P [Q P T − � �−1︸ ︷︷ ︸

= I

Q P T]

= I + R−1 P [Q P T − Q P T︸ ︷︷ ︸
= 0

] = I

Marginals of a Multivariate Gaussian

The marginal for a Gaussian in its moments parameterization

� =
(

�xx �xy

�yx �yy

)
and µ =

(
µx

µy

)

is N (µx, �xx). By definition, the information matrix of this
Gaussian is therefore�−1

xx
, and the information vector is

�−1
xx

µx . We show�−1
xx
= �̄xx via the Inversion Lemma from

Table 6; this derivation makes the assumption that none of the
participating matrices is singular. LetP = (0 1)T , and let
[∞] be a matrix of the same size as�yy but whose entries are
all infinite (and with[∞]−1 = 0. This gives us

(�+ P [∞]P T)−1 =
(

�xx �xy

�yx [∞]
)−1

(∗)=
(

�−1
xx

0
0 0

)

The same expression can also be expanded by the inversion
lemma into:

(�+ P [∞]P T)−1

= �−� P([∞]−1 + P T � P)−1 P T �

= �−� P(0+ P T � P)−1 P T �

= �−� P(�yy)
−1 P T �

=
(

�xx �xy

�yx �yy

)
−
(

�xx �xy

�yx �yy

)(
0 0
0 �−1

yy

)
(

�xx �xy

�yx �yy

)
(∗)=

(
�xx �xy

�yx �yy

)
−
(

0 �xy �−1
yy

0 1

)(
�xx �xy

�yx �yy

)

=
(

�xx �xy

�yx �yy

)
−
(

�xy �−1
yy

�yx �xy

�yx �yy

)

=
(

�̄xx 0
0 0

)

The remaining statement,�−1
xx

µx = ξ̄x , is obtained analo-
gously, exploiting the fact thatµ = �−1ξ and the equality of
the two expressions marked “(∗)” above:(

�−1
xx

µx

0

)
=

(
�−1

xx
0

0 0

)(
µx

µy

)

=
(

�−1
xx

0
0 0

)
�−1

(
ξx

ξy

)
(∗)=

[
�−

(
0 �xy �−1

yy

0 1

)
�

]
�−1

(
ξx

ξy

)

=
(

ξx

ξy

)
−
(

0 �xy �−1
yy

0 1

)(
ξx

ξy

)

=
(

ξ̄x

0

)

Thrun and Montemerlo / The GraphSLAM Algorithm 427

Conditionals of a multivariate Gaussian

Proof. The result follows trivially from the definition of a
Gaussian in information form:

p(x | y)

= η exp

{
−1

2

(
x

y

)T (
�xx �xy

�yx �yy

)(
x

y

)

+
(

x

y

)T (
ξx

ξy

)}

= η exp

{
−1

2
xT �xxx + xT �xyy − 1

2

+yT �yyy + xT ξx + yT ξy

}
= η exp{−1

2
xT �xxx

+xT (�xyy + ξx)−1

2
+ yT �yyy + yT ξy︸ ︷︷ ︸

const.

}

= η exp{−1

2
xT �xxx + xT (�xyy + ξx)}

References

Allen, P. and Stamos, I. 2000. Integration of range and image
sensing for photorealistic 3D modeling. InProceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 1435–1440.

Araneda, A. 2003. Statistical inference in mapping and local-
ization for a mobile robot. InBayesian Statistics 7. (eds
Bernardo, J. M., Bayarri, M., Berger, J., Dawid, A. P.,
Heckerman, D., Smith, A., and West, M). Oxford Univer-
sity Press, Oxford, UK.

Bailey, T. 2002.Mobile Robot Localisation and Mapping in
Extensive Outdoor Environments. PhD thesis, University
of Sydney, Sydney, NSW, Australia.

Bajcsy, R., Kamberova, G., and Nocera, L. 2000. 3D re-
construction of environments for virtual reconstruction. In
Proc. of the 4th IEEE Workshop on Applications of Com-
puter Vision.

Baker, C., Morris, A., Ferguson, D., Thayer, S., Whittaker,
C., Omohundro, Z., Reverte, C., Whittaker, W., Hähnel,
D., and Thrun, S. 2004. A campaign in autonomous mine
mapping. InProceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA).

Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W.,
and Teller, S. 2004. Simultaneous localization and map
building in large-scale cyclic environments using the at-
las framework.International Journal of Robotics Research
23(12):1113–1139.

Bosse, M., Newman, P., Soika, M., Feiten,W., Leonard, J., and
Teller, S. 2003. An atlas framework for scalable mapping.

In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA).

Bulata, H. and Devy, M. 1996. Incremental construction of a
landmark-based and topological model of indoor environ-
ments by a mobile robot. InProceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA),
Minneapolis, USA.

Cheeseman, P. and Smith, P. 1986. On the representation and
estimation of spatial uncertainty.International Journal of
Robotics 5:56–68.

Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter,
D. 1999. Probabilistic Networks and Expert Systems.
Springer Verlag, Berlin, New York.

Csorba, M. 1997.Simultaneous Localisation and Map Build-
ing. PhD thesis, University of Oxford.

Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H.,
and Csorba, M. 2001.A solution to the simultaneous local-
isation and map building (SLAM) problem.IEEE Trans-
actions of Robotics and Automation 17(3):229–241.

Duckett,T., Marsland, S., and Shapiro, J. 2000. Learning glob-
ally consistent maps by relaxation. InProceedings of the
IEEE International Conference on Robotics and Automa-
tion, San Francisco, pp. 3841–3846.

Duckett, T., Marsland, S., and Shapiro, J. 2002. Fast, on-line
learning of globally consistent maps.Autonomous Robots
12(3):287–300.

Durrant-Whyte, H. 1988. Uncertain geometry in robotics.
IEEE Transactions on Robotics and Automation 4(1):23–
31.

El-Hakim, S., Boulanger, P., Blais, F., and Beraldin, J.-A. 1997.
Sensor based creation of indoor virtual environment mod-
els. InProc. of the 4th Internetional Conference on Virtual
Systems and Multimedia (VSMM), Geneva, Switzerland.

Elfes, A. 1987. Sonar-based real-world mapping and navi-
gation. IEEE Journal of Robotics and Automation RA-
3(3):249–265.

Folkesson, J. and Christensen, H. I. 2004a. Graphical SLAM:
A self-correcting map. InProceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA),
New Orleans, USA.

Folkesson, J. and Christensen, H. I. 2004b. Robust SLAM.
In Proceedings of the International Symposium on Au-
tonomous Vehicles, Lisboa, PT.

Frese, U. 2004.An O(logn) Algorithm for Simultaneous Lo-
calization and Mapping of Mobile Robots in Indoor En-
vironments. PhD thesis, University of Erlangen-Nürnberg,
Germany.

Frese, U. and Hirzinger, G. 2001. Simultaneous localization
and mapping—a discussion. InProceedings of the IJCAI
Workshop on Reasoning with Uncertainty in Robotics, pp.
17–26, Seattle, WA.

Frese, U., Larsson, P., and Duckett, T. 2005. A Multigrid Al-
gorithm for Simultaneous Localization and Mapping. In
IEEE Transactions on Robotics, 21(2):1-12.

428 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May–June 2006

Golfarelli, M., Maio, D., and Rizzi, S. 1998. Elastic correc-
tion of dead-reckoning errors in map building. InProceed-
ings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 905–911, Victoria,
Canada.

Guivant, J. and Masson, F. 2005. Using absolute non-gaussian
non-white observations in Gaussian SLAM. InProceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA), Barcelona, Spain.

Guivant, J. and Nebot, E. 2001. Optimization of the simul-
taneous localization and map building algorithm for real
time implementation.IEEE Transactions of Robotics and
Automation 17(3):242–257.

Gutmann, J.-S. and Konolige, K. 2000. Incremental mapping
of large cyclic environments. InProceedings of the IEEE
International Symposium on Computational Intelligence
in Robotics and Automation (CIRA).

Gutmann, J.-S. and Nebel, B. 1997. Navigation mobiler
roboter mit laserscans. InAutonome Mobile Systeme.
Springer Verlag, Berlin. In German.

Hähnel, D., Burgard, W., Wegbreit, B., and Thrun, S. 2003a.
Towards lazy data association in SLAM. InProceedings
of the 11th International Symposium of Robotics Research
(ISRR’03), Sienna, Italy. Springer.

Hähnel, D., Schulz, D., and Burgard, W. 2003b. Mobile robot
mapping in populated environments.Autonomous Robots
17(7):579–598.

Iocchi, L., Konolige, K., and Bajracharya, M. 2000. Visually
realistic mapping of a planar environment with stereo. In
Proceesings of the 2000 International Symposium on Ex-
perimental Robotics, Waikiki, Hawaii.

Julier, S. and Uhlmann, J. K. 2000. Building a million bea-
con map. InProceedings of the SPIE Sensor Fusion and
Decentralized Control in Robotic Systems IV, Vol. #4571.

Konecny, G. 2002.Geoinformation: Remote Sensing, Pho-
togrammetry and Geographical Information Systems. Tay-
lor & Francis.

Konolige, K. 2004. Large-scale map-making. InProceedings
of the AAAI National Conference on Artificial Intelligence,
pp. 457–463, San Jose, CA. AAAI.

Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., and
Savelli, F. 2004. Local metrical and global topological
maps in the hybrid spatial semantic hierarchy. InProceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA), New Orleans.

Lawler, E. and Wood, D. 1966. Branch-and-bound methods:
A survey.Operations Research 14:699–719.

Leonard, J. J. and Durrant-Whyte, H. F. 1991. Mobile robot
localization by tracking geometric beacons.IEEE Trans-
actions on Robotics and Automation 7(3):376–382.

Leonard, J. and Newman, P. 2003. Consistent, convergent, and
constant-time SLAM. InProceedings of the IJCAI Work-
shop on Reasoning with Uncertainty in Robot Navigation,
Acapulco, Mexico.

Leonard, J., Tardós, J., Thrun, S., and Choset, H. (eds) 2002.
Workshop Notes of the ICRA Workshop on Concurrent
Mapping and Localization for Autonomous Mobile Robots
(W4). ICRA Conference, Washington, DC.

Levoy, M. 1999. The digital michelangelo project. InProc. of
the Second International Conference on 3D Imaging and
Modeling.

Liu, Y. and Thrun, S. 2003. Results for outdoor-SLAM using
sparse extended information filters. InProceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA).

Lu, F. and Milios, E. 1997. Globally consistent range scan
alignment for environment mapping.Autonomous Robots
4:333–349.

Montemerlo, M., Roy, N., and Thrun, S. 2003. Perspec-
tives on standardization in mobile robot programming:
The Carnegie Mellon navigation (CARMEN) toolkit.
In Proceedings of the Conference on Intelligent Robots
and Systems (IROS). Software package for download at
www.cs.cmu.edu/∼carmen.

Montemerlo, M. and Thrun, S. 2004. Large-scale robotic 3-
d mapping of urban structures. InProceedings of the In-
ternational Symposium on Experimental Robotics (ISER),
Singapore. Springer Tracts inAdvanced Robotics (STAR).

Montemerlo, M., Thrun, S., Koller, D., andWegbreit, B. 2002.
FastSLAM: A factored solution to the simultaneous local-
ization and mapping problem. InProceedings of the AAAI
National Conference on Artificial Intelligence, Edmonton,
Canada. AAAI.

Moravec, H. P. 1988. Sensor fusion in certainty grids for mo-
bile robots.AI Magazine 9(2):61–74.

Moutarlier, P. and Chatila, R. 1989a. An experimental system
for incremental environment modeling by an autonomous
mobile robot. In1st International Symposium on Experi-
mental Robotics, Montreal.

Moutarlier, P. and Chatila, R. 1989b. Stochastic multisensory
data fusion for mobile robot location and environment
modeling. In5th Int. Symposium on Robotics Research,
Tokyo.

Narendra, P. and Fukunaga, K. 1977. A branch and bound
algorithm for feature subset selection.IEEE Transactions
on Computers 26(9):914–922.

Newman, P. 2000.On the Structure and Solution of the Si-
multaneous Localisation and Map Building Problem. PhD
thesis, Australian Centre for Field Robotics, University of
Sydney, Sydney, Australia.

Newman, P. M. and Durrant-Whyte, H. F. 2001. A new solu-
tion to the simultaneous and map building (SLAM) prob-
lem. InProceedings of SPIE.

Newman, P. and Rikoski, J. L. R. 2003. Towards constant-time
slam on an autonomous underwater vehicle using synthetic
aperture sonar. InProceedings of the International Sympo-
sium of Robotics Research, Sienna, Italy.

Paskin, M. 2003. Thin junction tree filters for simultaneous

Thrun and Montemerlo / The GraphSLAM Algorithm 429

localization and mapping. InProceedings of the Sixteenth
International Joint Conference on Artificial Intelligence
(IJCAI), Acapulco, Mexico. IJCAI.

Pearl, J. 1988.Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann Pub-
lishers, San Mateo, CA.

Pollefeys, M., Koch, R., and Gool, L.V. 1998. Self-calibration
and metric reconstruction in spite of varying and unknown
internal camera parameters. InProceedings of the Interna-
tional Conference on Computer Vision, pp. 90–95, Bom-
bay, India. IEEE.

Rusinkiewicz, S. and Levoy, M. 2001. Efficient variants of the
ICP algorithm. InProc. Third International Conference on
3D Digital Imaging and Modeling (3DIM), Quebec City,
Canada. IEEEComputer Society.

Smith, R. and Cheeseman, P. 1986. On the representation and
estimation of spatial uncertainty.International Journal of
Robotics Research 5(4):56–68.

Smith, R., Self, M., and Cheeseman, P. 1990. Estimating un-
certain spatial relationships in robotics. InAutonomous
Robot Vehicles (eds Cox, I. and Wilfong, G.) pp. 167–193.
Springer-Verlag.

Soatto, S. and Brockett, R. 1998. Optimal structure from mo-
tion: Local ambiguities and global estimates. InProceed-
ings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 282–288.

Tardós, J., Neira, J., Newman, P., and Leonard, J. 2002. Ro-
bust mapping and localization in indoor environments us-
ing sonar data.International Journal of Robotics Research
21(4):311–330.

Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S.,
Jethwa, M., and Master, N. 2001. Calibrated, registered
images of an extended urban area. InProceedings of the

Conference on Computer Vision and Pattern Recognition
(CVPR).

Thrun, S., Koller, D., Ghahramani, Z., Durrant-Whyte, H., and
Ng, A. 2002. Simultaneous mapping and localization with
sparse extended information filters. InProceedings of the
Fifth International Workshop on Algorithmic Foundations
of Robotics (eds Boissonnat, J.-D., Burdick, J., Goldberg,
K., and Hutchinson, S.), Nice, France.

Thrun, S. and Liu, Y. 2003. Multi-robot SLAM with sparse
extended information filers. InProceedings of the 11th In-
ternational Symposium of Robotics Research (ISRR’03),
Sienna, Italy. Springer.

Tomasi, C. and Kanade, T. 1992. Shape and motion from im-
age streams under orthography: A factorization method.
International Journal of Computer Vision 9(2):137–154.

Uhlmann, J., Lanzagorta, M., and Julier, S. 1999. The NASA
mars rover:A testbed for evaluating applications of covari-
ance intersection. InProceedings of the SPIE 13th Annual
Symposium in Aerospace/Defence Sensing, Simulation and
Controls.

Wang, C.-C., Thorpe, C., and Thrun, S. 2003. Online simulta-
neous localization and mapping with detection and track-
ing of moving objects: Theory and results from a ground
vehicle in crowded urban areas. InProceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA).

Williams, S. B. 2001.Efficient Solutions to Autonomous Map-
ping and Navigation Problems. PhD thesis,ACFR, Univer-
sity of Sydney, Sydney, Australia.

Williams, S., Dissanayake, G., and Durrant-Whyte, H. 2001.
Towards terrain-aided navigation for underwater robotics.
Advanced Robotics 15(5).

