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Abstract: In this paper we propose a non-linear model predictive controller architecture

(NMPC) for trajectory tracking of an omni-directional mobile robot. The controller employs

a simplified process model to predict the evolution of the state of the robot which allows for

real-time minimization of the cost function using gradient descent methods. The cost function

is chosen so as to penalize the position and orientation errors, as well as the variation of the

control effort. Simulation tests are performed under different controller settings in order to

evaluate the performance of system. The results are presented at the end of the paper.
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1. INTRODUCTION

Given the applications in which mobile robots are

used nowadays, the demand for higher performance

trajectory tracking controllers is steadily increasing.

Be it military situations, surveillance or recognition

missions, or even robotic soccer, these controllers are

required to operate correctly at high speeds, providing

precise and stable tracking of complicated trajectories

in sometimes very dynamic environments. In robotic

soccer, for example, each robot is required to track, at

high speeds, trajectories with sudden changes in direc-

tion and orientation, in a playing field crowded with

other robots. Classical control strategies are clearly

not sufficient.

Trajectory tracking controllers may be divided into

two major categories: reactive controllers and predic-

tive controllers. Reactive controllers typically rely on

structures with feedback loops for the state of the

robot, calculating the control signals based on the er-
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ror between the current state and the desired one. This

means that corrective measures are taken only after

the error has occurred, which is unsuitable for tracking

trajectories at high velocities. Predictive controllers on

the other hand use future information (both by taking

advantage of having knowledge about the whole tra-

jectory and by predicting the evolution of the state of

the robot based on its model) to optimize the control

signals. This allows action to be taken before the errors

occur, thus making predictive control much more suit-

able for high speed trajectory tracking. However, the

complex models used for the prediction might cause

the controllers to become too computationally inten-

sive to be useful for real time control. On the other

hand, the use of simplified models might cause the

predictions to become too inaccurate rendering them

useless for control at high speeds. Interesting imple-

mentations of predictive controllers are presented in

(Li et al., 2001) or (Gu and Hu, 2000). The prime ref-

erence for the controller here designed is (Conceição

et al., 2008).

The controller presented in this paper was devel-

oped as part of a larger project which required high-

performance trajectory tracking of a single robot



for use in mobile robot formations in robotic soc-

cer. Due to their ability to incorporating information

about the trajectory into the calculation of the con-

trol signals, model predictive control techniques were

used ((Camacho and Bordons, 2004), (Findeisen and

Allgöwer, 2002)). A simplified process model was

used, approximating the response of each motor by a

first order system with an invariant step response. The

steepest descent method was used to minimize the cost

function and calculate the desired control signals.

This paper is organized in 5 sections. Section 1 pro-

vides an introduction to the problem and a brief pre-

sentation of the state of the art. In section 2 the robot

used is described and modelled. The controller archi-

tecture is detailed in section 3 and test results are pre-

sented and discussed in section 4. Finally, conclusions

on the work done are drawn in section 5.

2. THE ROBOT

As testbed for the controller, a three wheeled omni-

directional robot was used. This particular robot is part

of the 5DPO robotic soccer team from the Faculty of

Engineering of the University of Porto. It employs a

mix of a computer based vision system and odometry

to track its position in the world, the control being

provided by a laptop connected by a RS232 link to

the motor drivers. Each motor driver has its own

PID controller to track a speed reference. The laptop

runs the Ubuntu 9.10 operating system and all the

control software is programmed in the Lazarus/FPC

language. The control loop runs with a 40 ms period,

synchronized with the arrival of a new frame from the

camera (running at 25 FPS). A schematic of the robot

is presented in figure 1.
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Fig. 1. Schematic of the three wheeled omni-

directional robot used

Let X(t) = [xc(t) yc(t) θ(t)]T be the state of the

robot, with xc(t) and yc(t) being its position and θ(t)
its orientation in relation to the X axis of the world

frame. Let also VR(t) = [v(t) vn(t) w(t)]T and

VXoY (t) = [vx(t) vy(t) w(t)]T be the speed vectors

of the robot, in coordinates of the robot and the world

frames, respectively. v(t), vn(t), vx(t), and vy(t)
are the linear speeds and w(t) the angular speed. The

vector Vw(t) = [v1(t) v2(t) v3(t)]
T contains the

linear speeds of each wheel.

The equations for direct and inverse kinematics (that

is, to obtain Vw(t) from VR(t) and vice-versa) can

be found in (Helder P. Oliveira and Costa, 2009).

The speed values can be switched between world-

frame coordinates and robot-frame coordinates using

equation 1.





v(t)
vn(t)
w(t)



 =





cos(θ(t)) sin(θ(t)) 0
−sin(θ(t)) cos(θ(t)) 0

0 0 1



 ·





vx(t)
vy(t)
w(t)





(1)

2.1 Evolution of the state of the robot

Considering a simplified version of the system with a

sampling time of T the state of the robot at instant k+1
can be determined from its speed and state at instant

k by applying equation 2, where ct = cos(θ(k)) and

st = sin(θ(k)).

X(k + 1) = X(k) + T ·





ct −st 0
st ct 0
0 0 1



 ·





v(t)
vn(t)
w(t)



 (2)

3. CONTROLLER ARCHITECTURE

The basic idea behind the NMPC controller presented

in this paper is quite an intuitive one, following closely

the classic MPC approach. Using a mathematical

model of the robot, the evolution of its state (position

and orientation) is predicted for the so called predic-

tion horizon (Tp), using different sets of control in-

puts. For each set of control inputs a cost value is cal-

culated for the simulation. The cost function penalizes

differences in position and orientation of the robot in

relation to the reference, as well as the variation of the

control effort. The steepest descent gradient method is

then used to optimize the cost function, calculating the

control inputs that minimize its value for the desired

control horizon (Tu). The first value of the calculated

control inputs vector is applied to the robot and the

process is repeated in the next cycle. The structure of

the controller is presented in figure 2. R is the global

reference trajectory, |V | the desired speed module, U
the control inputs and X the state of the robot. Also,

Rref represents the reference trajectory for the con-

troller (see section 3.2) and Xsim the simulated state

of the robot.

3.1 Cost Function

This being a trajectory tracking problem, the cost

function naturally penalizes differences between the
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Fig. 2. Structure of the Predictive Controller

position and orientation of the robot and those of the

reference trajectory, for each instant of the prediction

horizon Tp (here used as its discreet equivalent, Np).

Thus, the cost function is defined, in discrete time, in

equation 3 as:

J(N1, N2, Nc) =

N2
∑

i=N1

(λ1([xsim(i)− xref (i)]2+

[ysim(i)− yref (i)]2))+
N2
∑

i=N1

(λ2[θsim(i)− θref (i)]2) +

Nc
∑

i=1

λ3(∆U(i))

(3)

• N1, N2 - prediction horizon limits, in discreet

time, so that N1 > 0 e N2 ≤ Np.

• Nc - control horizon.

• λ1, λ2, λ3 - weights for each component of the

cost function

• xsim(k), ysim(k), θsim(k) - predicted position

and orientation of the robot at instant i.
• xref (k), yref (k), θref (k) reference position and

orientation values for the robot at instant i .

• ∆U(k) = [vr(k) − vr(k − 1)]2 + [vnr(k) −
vnr(k−1)]2+[wr(k)−wr(k−1)]2 - variation of

the control signals, with U(i) being the reference

velocities vector.

3.2 Reference Trajectory

The global reference trajectory is simply an ordered

set of points mapped in the XoY frame, with an ori-

entation reference associated to each of these points.

It contains no time parametrization whatsoever, so

each time the cost function is calculated a reference

trajectory for the desired prediction horizon must be

created, taking into account the desired speed and the

global reference trajectory. Figure 3 depicts the pro-

cess of obtaining this reference trajectory.

The first point of the new trajectory Rref is the point

from the segments that compose the global reference

trajectory R that’s closest to the robot. The remaining

points are calculated as having a distance equal to
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Fig. 3. Obtaining the reference trajectory for the con-

troller

|Vref | ∗ T from the previous point, marked over the

main reference trajectory. |Vref | is the module of the

desired speed and T the period of the control algo-

rithm, here 40 ms. For each point of the new trajec-

tory, the θ reference is linearly interpolated between

the θ references of the global reference trajectory.

3.3 Process Model and Simulation

The initial process model was a purely cinematic

model of the robot, containing no dynamics. Elements

where then progressively added to the model, in an

attempt to improve performance of the controller by

making the model closer to reality.

First the saturation effect of the motor speeds was

added to the model. Using the process described in

(Conceição et al., 2006) a function was added to de-

tect wheel speed reference saturation and scale the re-

maining motor speeds in order to maintain movement

direction.

Then the step response of each motor plus PID con-

troller set was approximated by a first order LTI (Lin-

ear Time Invariant) system. Let U(t) be the speed

reference of the motor and Y (t) the actual speed.

Applying the Laplace transform, the transfer function

of the first order system will be defined as G(s) =
Y (s)
U(s) = K

s+r
, where K is the DC gain of the sys-

tem and r = 1/τ , τ being the time constant of the

system. This type of LTI system has an exponential

response to a step input. An initial value of τ was

estimated by plotting the step response of the motors

in simulation. This time constant was later fine-tuned

by testing several values and analysing the controller

performance for each. The results found in (Neuman

and Baradello, 1979) were used to implement a digital

transfer function to calculate this response.

The final model of the process consists of a cine-

matic model with added motor speed saturation and

first order dynamics for motor speed step response.

Given this model the simulation proceeds as follows.

The linear speed references VR(t) are transformed in

wheel speed references Vw using inverse kinematics.

The wheel speed saturation detection is applied to



these wheel speed reference values, scaling them if

needed. Then, for each motor the real motor speeds

Vw.Real are predicted according to the model. Using

the kinematics equations the real motor speeds are

turned back into real linear speeds VR.Real. Finally,

equation 2 is used to calculate the new state of the

robot. This process is repeated for every time step -

with different control signals if Nu > 1 - for which

the simulation is desired.

3.4 Minimization of the Cost Function

Because the model is non-linear, iterative numerical

methods were used to minimize the cost function J .

The steepest descent method (presented in (Fletcher,

2001)), described in algorithm 1 to minimize f(x),
was adapted and used to minimize J in relation to U .

From the minimization of the cost function results the

optimal control input.

Algorithm 1 - Steepest Descent

1. Given x0, set k = 0
2. Compute dk = −∇f(xk), where∇f denotes

the gradient of f .

3. If dk < ǫ stop. Else, find the new point

xk+1 = xk + α · dk.

4. Increment k = k + 1, go to step 2.

In the algorithm definition, α is the size of the step in

the direction of the travel, xk and xk+1 are the variable

values in k and k + 1, and ǫ is the stop criterion.

4. EXPERIMENTAL RESULTS

All of the results presented in this paper were obtained

from simulation tests performed with the SimTwo

software (Costa, 2010), using a very precise model

of the robot determined previously in (Caldas, 2009).

SimTwo uses the ODE physics simulation engine

(Smith, 2010), which enables a very precise simula-

tion of rigid body dynamics. Due to the quality of the

model used, the simulation exhibits a high degree of

realism and may be considered a very good approxi-

mation of the real robot’s behaviour.

4.1 Quality Measures

Three quality measures were defined to qualify each

test result: Maximum Overshoot (maximum overshoot

the robot’s trajectory exhibits when performing the

corners), Maximum Settling Time (the maximum time

the robot takes to get back within 5 cm of the reference

trajectory after overshooting), and Total Quadratic Er-

ror (sum of the squares of the differences between

the robot’s position and the reference trajectory at

every instant). Initial tests have shown that the Total

Quadratic Error is not a good quality measure, as

sometimes results with large overshoots exhibited the

same values for this measure as results with much

smaller overshoots, due to the behaviour during the

rest of the trajectory. Therefore, Maximum Overshoot

and Maximum Settling Time are considered the pri-

mary quality measures.

4.2 Test Trajectory

In order to simulate common situations in robotic

soccer, a test trajectory containing abrupt changes in

direction and orientation is needed. Taking this into

account, a ”pulse” type trajectory was used, contain-

ing different reference orientations for each segment.

The trajectory is defined in table 1 and can be seen in

the XY plots in section 4.4.

index xref yref θref segment i to i+1

(i) (m) (m) (rad)

1 0 0 0

2 3 0 π/2

3 3 3 0

4 6 3 −π/2

5 6 0 0

6 9 0 -

Table 1. Parameters for the reference trajec-

tory used in the controller tests

4.3 Optimizer Parameters

The time constraints on the execution of the control

algorithm are rather severe, so the minimization al-

gorithm to minimize J must be parametrized accord-

ingly. Namely, a correct iteration limit ITmax and stop

criterion ǫ must be determined so that the control loop

is executed in under 15-20 ms, given the desired Np

and Nu values. The algorithm execution stops and

the best values obtained so far are considered optimal

when either the iteration count goes over ITmax itera-

tions or the cost value goes under ǫ.

Several tests of the optimization algorithm were con-

ducted using ǫ = 0 and ITmax = ∞, with Nu = 2
and Np = 10. Analysis of the logs of the optimization

algorithm have shown that for values of J < 0.1
the changes in the control inputs are not very signif-

icant. Therefore, a slightly lower value of ǫ = 0.05
was defined as a stop criterion. Choosing ITmax is

a matter of balancing algorithm execution time and

optimizer precision. When the robot has been follow-

ing a straight line for a while, the optimization usually

converges in around 4 or 5 iterations (taking around 3

ms of processing time on a laptop running with an Intel

Core 2 Duo processor at 2GHz). When a corner is per-

formed and the robot overshoots, the cost values rise

abruptly and the cost function cannot be minimized

in useful time. A value of ITmax = 30 was chosen

because it allowed for a certain degree of optimization

of the control signals in these situations while keeping

the algorithm execution time within the defined limits.



4.4 Effect of Controller Parameters

In order to find the effect on performance of the

controller parameters, tests were conducted for values

of Np ranging from 8 to 12 and values of Nu ranging

from 1 to 3. The optimizer parameters were the ones

described in 4.3 and the weights used for the cost

function were λ1 = 2, λ2 = 1, λ3 = 0. The reference

speed was 2m/s.

Results for Maximum Overshoot and Maximum Set-

tling Time are presented in tables 2 and 3. Several plots

are also presented in figure 4 in order do illustrate the

most pertinent results.
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Fig. 4. Controller test results at Vref = 2m/s

Maximum Overshoot [m] Vs Np, Nu

Nu
Np

8 9 10 11 12

1 0.3720 0.3400 0.2153 0.1958 0.2000

2 0.2474 0.1857 0.0966 0.1006 0.0770

3 0.2749 0.1406 0.0703 0.0791 0.0733

Table 2. Maximum Overshoot Values

Maximum Settling Time [s] Vs Np, Nu

Nu
Np

8 9 10 11 12

1 1.2000 1.0800 1.0400 1.2800 1.3600

2 0.8000 0.9600 0.7600 1.1600 0.7200

3 1.0400 0.6800 1.2400 1.1200 0.9200

Table 3. Maximum Settling Time Values

The average and maximum execution times of the

control algorithm for each of the test parameters are

also presented in table 4.

Let us consider the Maximum Overshoot as the main

quality measure. The results clearly show that, in a

general way, the performance of the controller im-

proves with the increase of Nu. However, each unitary

increase in Nu results in a large increase in computa-

tion time for the control algorithm, due to the way the

Steepest Descent algorithm works. Because the con-

trol loop time is limited to 40ms this sometimes re-

Max. and Avg. Control Loop Execution Time [s] Vs Np, Nu

Nu
Np

8 9 10 11 12

1
7.41 7.28 7.38 7.87 9.29

16 15 16 17 18

2
13.10 12.280 13.30 13.60 16.77

23 24 25 26 29

3
18.63 18.09 17.78 21.14 23.54

30 34 34 35 36

Table 4. Maximum and Average Control

Loop Execution Times

sults in loss of synchronism and degradation of perfor-

mance. Also, the improvement when switching from

Nu = 1 to Nu = 2 is bigger than when switching

from Nu = 2 to Nu = 3. The performance improve-

ment at Nu = 3, when compared to Nu = 2, does not

make up for the increase in execution time. The effect

of Np is more complex. Values much lower than 10

result in large overshoots due to the corners not being

predicted soon enough. With values much higher than

10 the robot tends to miss the control points and do

the corners ”on the inside”. There is also an effect

on computational time of the algorithm, albeit not as

severe as the one caused by Nu. In general terms,

the computational time also rises with the increase of

Np, as expected. However, for values of Np = 8, the

average computational time of the algorithm appears

larger than for Np = 9. This is probably due to the

Steepest Descent algorithm needing, on average, more

iterations to converge when really short prediction

horizons are used. The ideal balance between perfor-

mance and acceptable computational time appears to

be Nu = 2 and Np = 10.

4.5 Effect of the Process Model

The tests in figure 5 were aimed at comparing the

performance of the present controller with an identical

predictive controller using a purely cinematic model

and with the reactive controller currently used in the

5DPO robotic soccer team.
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Fig. 5. Controller performance comparison tests

The results clearly show the advantage of predictive

control over purely reactive one. Whereas the reactive

controller causes severe overshoots an undershoots

at sharp corners, its performance severely degrading

with the increase in reference speed, the predictive

controller results in much smoother trajectories, with

smaller overshoots. The reactive controller performs



a go to XY operation to some points ahead in the

trajectory and not to the next immediate point, which

accounts for the fact that it starts turning slightly

before the corner. Also depicted is the importance of

correctly simulating the dynamics of the robot. At

low speeds, the controller with the purely cinematic

model presents a performance similar to that of the

one with the simplified dynamic model, with only a

slightly larger overshoot. When the reference velocity

is increased, the performance of the controller with the

purely cinematic model drops significantly below that

of the other. The higher the reference speed desired,

the more important it is to correctly simulate the

dynamics of the robot.

4.6 Trajectories with smooth and fixed θref

Finally, results are shown in figure 6 for the tracking of

trajectories with either fixed θref or smooth variations

of θref along the segments. The same trajectory as

previously was used, but the θ references have been

changed to the two situations described.
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Fig. 6. Results for trajectories with smooth and fixed

θref , Vref = 2m/s

With a fixed value of θref the trajectory is tracked

with very low overshoot. As for the trajectory with

a smooth θref variation, some errors are discernible

but not very significant. For both situations, the per-

formance of the controller is significantly better than

in trajectories with abrupt θref variations at corners.

These results also attest to the quality of the controller.

5. CONCLUSION

A strategy for trajectory tracking of an omni-directional

mobile robot with a non-linear model predictive con-

troller using iterative numeric methods for minimiza-

tion of the cost function was proposed. The main

difference from the works upon which this controller

is based on lies on the use of the simplified process

model, allowing for real-time execution of the algo-

rithm on rather modest computers using large (> 10)

prediction horizons. Both the parameters of the con-

troller (Nu, Np) and the optimizer (ITmax, ǫ, α)

have a high impact on the performance and should be

tuned to the trajectories and robot at hand. The impor-

tance of correct simulation of the robot’s dynamics as

opposed to simply using a cinematic model has been

demonstrated. The higher the reference speed desired,

the more important it is to correctly simulate dynam-

ics. The experimental results obtained attest to the

quality of the controller when precisely tuned to the

robot used. This performance is even better when the

reference trajectories have a fixed θ reference or this

value is allowed to vary smoothly along the trajectory.
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