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Abstract. The robotics community is concerned with the ability to infer
and compare the results from researchers in areas such as vision percep-
tion and multi-robot cooperative behavior. To accomplish that task, this
paper proposes a real-time indoor visual ground truth system capable of
providing accuracy with at least more magnitude than the precision of
the algorithm to be evaluated. A multi-camera architecture is proposed
under the ROS (Robot Operating System) framework to estimate the
3D position of objects and the implementation and results were contex-
tualized to the Robocup Middle Size League scenario.

1 Introduction

The robotics community is addressing research areas such as vision percep-
tion[1][9], multi-robot cooperative behavior[18] and localization[11]. In all these
areas, the ability to evaluate the results is a crucial step to assess the quality
of the research presented by the authors. This concern with obtaining better
results in robotics was expressed by the European Robotics Research Network
(EURON)[12] and cited by [13]. A ground truth system based on vision is fre-
quently used in nearly all robotic labs in response to this uneasiness and the
solutions available can be classified in two major categories: commercial and
self-developed solutions. In the commercial category, some of the possible solu-
tions are the Vicon[9][13] and Optitrac[2], which provide enough accuracy for
most robotics applications, but with higher costs. More than the price itself,
these systems have limitations that could make them impracticable in some sce-
narios, such as the pulsed infra-red light limit range to the reflective markers
and the fact that some objects to track cannot carry the markers due to the
geometry (for example, a ball). Some examples of the implementation of com-
mercial solutions are in the 6D data collection for the biped humanoid robot
Aldebaran Nao from the Robocup Standard Platform League (SPL)[13] and the
ground truth to benchmark visual pose estimation algorithms implemented in a
standard quadrotor platform[9].

Regarding the self-developed solution, there are a wide range of implemen-
tations that were written from the scratch and are, with some exceptions, rarely
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usable by anyone other than the original programmer. To enumerate some of
them, there is the XVision[16] and TrackIt[6]. The exceptions are the Swis-
Track[10], which is a generic and flexible tool for tracking robots and insects
in flocks and formation control experiments with robots such as the Khepera
and e-puck; the SSL-Vision[19] system which is used by the Robocup Small Size
League to estimate the ground truth position of the robots and ball in 2D, ex-
tended in [20] for the Middle Size League and to the Aldebaran Nao by [15].
It is important to stress that all solutions available are limited to 2D tracking
of known markers using a vision system located above the tracking area. More
recently, a real-time solution was developed using depth information (3D track-
ing) obtained with a Microsoft Kinect RGB-D Sensor to track the robots from
the SPL[7]. The main limitation of this approach is the scenario constraints, a
max area of 6m2 due to the Kinect sensor range limit of 3.5m, the field of view
(57� horizontally and 43� vertically) and camera resolution (640⇥ 480 pixels).

This work proposes a vision-based Ground Truth capable of performing 3D
tracking of multiple targets and overcoming the previously mentioned limita-
tions. The proposed Visual 3D Ground Truth system was developed for indoor
scenarios with the following goals: providing an easy method to obtain the re-
quired calibration parameters, which is able to ensure a good accuracy without
special markers, supporting an open-source implementation with low-cost hard-
ware and providing a framework capable of receiving add-ons from the robotics
community.

The visual ground truth evaluation scenario will be contextualized to the
Robocup Middle Size League (MSL) as this is an important testbed for robotics
applications. Here, a team of five robots play together sharing and combining in-
formation in order to present cooperative behaviors and to achieve a final goal,
which is playing soccer. In this specific and complex scenario, there are two
works[21][8] in the state of art that were considered references to characterize
which should be the requirements for the proposed system applicable to the en-
visioned Robocup scenario. These references were chosen as they are visual tools
(besides being visual ground truth systems) for the MSL developed for moni-
toring data logs, providing state estimation (localization and target estimation)
and path planning for each robot over the video recording of the game.

This paper is outlined as follows: Section II presents the proposal architecture
and methodology for target tracking objects by color and based on morphological
characteristics, the calibration procedure and the stereo triangulation method
to estimate the 3D position. Section III provides the results under the MSL
scenario for tracking two teams of robots during a game and the ball trajectory
for two types of kicking. Section IV provides the conclusion and outlines future
work topics.

2 Proposal Architecture and Methodology

The proposed architecture is organized in three major layers: Data Acquisition,
Image Processing and 3D Stereo Triangulation (see figure 1). The layers were
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implemented under the ROS (Robotic Operating System) framework as it is
capable of supporting multiple camera drivers, and it has a large impact on the
robotics community, providing a middleware for inter-process communication.
Furthermore, it is an open and modular framework suitable for further feature
development and integration.

Fig. 1. Proposal Architecture for Multi-Camera Visual Ground Truth System.

Although the architecture supports multi-cameras, the three layers contex-
tualized to a visual ground truth system will be described in detail. These are
composed of two gigabit ethernet cameras in a stereo baseline (see figure 2) and
applied to the Middle Size League (MSL) scenario.

2.1 Real-Time Data Acquisition System

The Data Acquisition layer is responsible for the camera acquisition hardware
abstraction through a generic image structure provided by the ROS. With this
abstraction, the researchers can integrate new features, such as camera drivers
inside the proposed architecture and ensure the integration with the other layers
available. For the proposal implementation scenario, the ground truth cameras
were positioned looking towards the testbed with a baseline of ⇠13 meters and
connected to a machine with Core Intel(R) Core(TM) i7 CPU 2.8GHz, 4GB
RAM, running a Linux operating system and connected to an external trigger
device to provide a snapshot from both cameras at the same instant. The cam-
eras used were the Basler acA1300-30gc at 15 frames per second (fps), each with
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a pixel resolution of 1278 ⇥ 958. Considering the application scenario, it is im-
portant to provide an accurate time synchronization between the ground truth
system and the robots in order to correlate the prioceptive and the eterocep-
tive information acquired by each system. Three clock synchronization protocols
were evaluated: the NTP (Network Time Protocol)[4], the PTP (Precision Time
Protocol)[22] and the Chrony[3]. The chrony was chosen for the comparison as
it presents a steady state with low o↵set < 2.6µs, after the system’s reboot
takes 0.2s to stabilize the o↵set and even when operating under sudden changes
(wireless link), the system remains stable.

2.2 Image processing

Fig. 2. Left: Geometrical Model for Stereo Triangulation. Right: Left and Right cam-
era field of view for the proposal implementation scenario.

The vision system setup is in a large field of view (FOV) and, as a conse-
quence, it becomes exposed to constraints that could lead to errors in the scene
analysis (see figure 2). The constraints are: light variations caused by the ex-
isting windows, color objects inside the FOV of the system and the possibility
of having people moving during a dataset. Adding to these constraints, there
are challenges imposed by the Robocup MSL with the color objects (arbitrary
ball) which tend to disappear as the competition evolves in order to increase the
di�culty posed to the vision algorithms.

In response to all these constraints, a scene analysis with the following steps
was implemented:

– Apply background subtraction (BGS) over the image. The objects to be de-
tected should not be present in the field. Then create a statistical model.
With this model, the objects can be detected by evidencing the parts of the
image that do not fit the model. The figure 3 presents the output from the
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Background Method time (s)

Adaptive Median[14] 0.0487
Adaptive Gaussian Mixure Model
(GMM)[24]

0.1238

Temporal Median[14] 0.0660
Gaussian Average[14] 0.0485
Improved Adaptive Gaussian Mix-
ture Model[24]

0.0810

Fig. 3. Left: Top-Left: Original Image. Top-Right: Adaptive Median. Middle-Left:
Gaussian Mixure Model (GMM). Middle-Right: Temporal Mean. Bottom-Left: Aver-
age GMM. Bottom-Right: Improved Adaptive GMM. Right: Results with di↵erent
Background Subtraction Methods with a fix value of 30 learning frames.

methods implemented to evaluate the quality of tracking and the computa-
tional overload of each method (see table from figure 3). From the snapshot
output results presented in figure 3 the method that will be applied to per-
form real-time tracking of robots and ball will be the BGS Gaussian Average.

– With the action areas from the BGS, there are two concurrently running
blocks, one for detecting the ball and another for detecting the robot team-
mate. The ball detection is conducted by taking advantage of the morpholog-
ical characteristics of the ball (round shape) and applying the Hough trans-
form algorithm to extract the ball’s position from the image plane p

balli . This
method allows it to become independent of the color of the ball detection,
overcoming one of the previously defined constraints. For the robots on the
field the detection is performed by finding color blobs over the action areas
and indexing (t) the colors to the color defined for each team pt

objecti
(see

figure 2).

2.3 Stereo Triangulation

With the points p
balli and pt

objecti
obtained from the scene analysis of each

camera, it was possible to obtain the 3D estimation of the objects by performing
stereo triangulation. This method requires two or more two-dimensional camera
views from a point, and it is implemented by a linear least-square fit of the
intersection of two rays and defined by the 2D image points p

i

, p
j

, the intrinsic
camera parameters and 3D camera configuration of each of the cameras[5] as
shown in figure 2.

The cameras are modeled by the classical pinhole model. Therefore, if we
assume a zero skew and a point in the camera p

i

= [u
i

, v
i

] image frame, a point
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is the focal length in
pixels for both directions, (u

ic , vic) is the main point and z is the scale factor.
The projection model will be the same for the camera on the right. In order
to estimate the extrinsic parameters, the common procedure to estimate the
rigid transformation parameters requires putting a calibration chessboard in
front of both cameras. For the proposed scenario this procedure could not be
implemented due to the distance between the cameras and the defined plane ⇡
as that would require a large chessboard to ensure that corners are detected with
higher accuracy. Considering the constraint, the solution is to extract points in
both cameras based on the available MSL field line intersection and triangulate
their 3D positions. Then, using the least-squares method it is possible to estimate
a 3D plane equation in the stereoscopic coordinate system, assuming the center
of the field as the 3D position (0, 0, 0) (see figure 2). This method makes it
possible to obtain the extrinsic parameters relating the world coordinate frame
and the camera coordinate frame, defined by a rotation R

i

and translation T
i

.

Both feature attributes and the epipolar constraint will be used to evalu-
ate the correspondence between points detected in each camera. In order to
meet the epipolar constraint: PT

i

K�T

i

EK�1
j

P
j

= 0 where the essential matrix

is E = T̂ i

j

Ri

j

and the relative rigid transformation parameters between cameras

are defined as Ri
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i

�Ri

j

T
j

.

3 Results

In order to evaluate the Ground Truth (GT) system, the MSL is proposed as
the implementation scenario as previously stated and justified. Two game situa-
tions are demonstrated to ensure a correct validation: two possible types of ball
trajectory (see figure 4) and a game situation with more than a robot playing
soccer (see figure 5).

Considering the first game situation, in both figures it is possible to observe
the ball trajectory tracked by the robot and by the GT system (see figure 4).
For more details on the ball trajectory tracked by the robot go to [17]. Focusing
on the right figure, it is possible to observe that the robot was not able to track
the ball with the same quality of the GT went the ball was far (⇠ 20m) from
the robot in the first parabola and improve its own detection went the ball was
near (⇠ 5m). In both figures, the GT was able to provide the trajectory of the
ball with high accuracy.

For the second game situation (see figure 5), it was possible to observe that
the ball was intercepted and kicked by a robot near the center of the field.
Although the figure on the right only presents one robot kicking a ball, in the
image on the left the GT system detects all robots inside the game field.
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Fig. 4. Comparison of the ball position observed by the robot (blue circle) against the
ground truth XY coordinate (red dot). Left: Ball kicked over the floor. Right: Ball
kicked with a parabola trajectory.

Fig. 5. Left: Snapshot from the stereo vision system installed for ground-truth eval-
uation of a game situation with three robots. Right: Comparison of the position of
the ball and robot XY coordinate (blue, green) against the visual ground truth’s XY
coordinates for the same (red, black).

3.1 Error Analysis

The accuracy of 3D reconstructions was analyzed with two methods. In the first
method, the distance between 2D points projected from a 3D estimate derived
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from the originally extracted two-dimensional points will be the measure of cali-
bration precision. The result obtained from the mean reprojection error was less
than one pixel. The second method will be used to determine accuracy, com-
paring the 3D coordinates and distances between coordinates measured through
stereo triangulation to the values measured physically. The ground truth system
proved to have high precision (low reprojection error) and a plausible accuracy,
even at 20 meters from the cameras’ position, and with an error below 0.05
meters.

4 Conclusions and Future Work

This paper proposes a vision based 3D ground truth tracking system for indoor
scenarios. The proposed system does not require special markers or illumination
such as the most commonly used in the current state of the art, and as a result
it can be applied to a wider range of scenarios.

An open development approach was used taking advantage of the widespread
ROS infrastructure, allowing further developments and a simple integration
within the research community. This factor is strengthened by the fact that
the original system has already been replicated and used in two other research
laboratories (at ISRLAB of ISR/IST Lisbon and at GroundSys Lab at INESC
Porto/ University of Porto).

A three layer architecture was proposed: decoupling data acquisition, image
processing and 3D target position determination allowing further developments
and modularity, leading to a high degree of adaptability to particular implemen-
tation scenarios.

The multi-camera system was characterized in a stereo setup, using standard
GigaE digital cameras and implemented in common computational hardware.

The time synchronization required to produce valid ground truth data for
multiple robotic research evaluations was taken into account with the analysis
of various time synchronization protocols. The overall time o↵set achieved was
under 2.6µs.

The results were evaluated in the RoboCup MSL scenario as this is a highly
dynamic and representative benchmark of multi-robot operation scenarios.

Multiple methods of background subtraction were analyzed to identify target
areas. A color based and a morphological feature detector were used to track both
the ball and the robots on the field.

This system has already been used to evaluate research results providing
valuable ground truth data [17].

The following topics can be considered for further work: extension of the
area using multiple additional cameras, particularly with the increased opera-
tional area and precision to be characterized. Di↵erent additional target detec-
tion methods are also being analyzeds for other application scenarios. An op-
timization camera to estimate position will be integrated in order to maximize
the field of view of the action area.
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We want to receive improvements and add-ons to the system from the robotic
research community, and therefore the developed visual ground truth ROS stack
will be available at the ROS website.

Extending the system to outdoor operations under more extreme lighting
conditions may also be addressed in the future.

Acknowledgment

The authors acknowledge the major support given by the ISEP-IPP Institu-
tion, by the INESC TEC, to this project. This work is financed by the ERDF
- European Regional Development Fund through the COMPETE Programme
and by National Funds through the FCT - Portuguese Foundation for Sci-
ence and Technology within project FCOMP-01-0124-FEDER-022701 and under
Perception-Driven Coordinated Multi-Robot Motion Control Project with refer-
ence PTDC/EEA-CRO/100692/2008.

References

1. M. Achtelik, S. Weiss, M. Chli, F. Dellaert, and R. Siegwart. Collaborative stereo.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2011.

2. Sean Augenstein. Monocular Pose and Shape Estimation of Moving Targets, for
Autonomous Rendezvous and Docking. PhD thesis, Stanford University, 2011.

3. Chrony. [online] http://chrony.tuxfamily.org/.
4. Pedro R. Torres Cristina D. Murta. Characterizing quality of time and topology

in a time synchronization network. 49th IEEE Global Telecommunications Con-
ference, IEEE GLOBECOM, 2006.

5. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, 2004.

6. Computational Interaction and Robotics lab John Hopkins University. A brief tour
of xvision [online]. http://www.cs.jhu.edu/CIPS/xvision, 2008.

7. Piyush Khandelwal and Peter Stone. A low cost ground truth detection system
using the kinect. In Thomas Roefer, Norbert Michael Mayer, Jesus Savage, and
Uluc Saranli, editors, RoboCup-2011: Robot Soccer World Cup XV, Lecture Notes
in Artificial Intelligence. Springer Verlag, Berlin, 2012. To appear.

8. Andreas Koch, Adam Berthelot, Bernd Eckstein, Oliver Zweigle, Kai Häussermann,
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